PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 59 trang 63 SGK Toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Giải các phương trình bằng cách đặt ẩn phụ:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

\(2{\left( {{x^2} - 2{\rm{x}}} \right)^2} + 3\left( {{x^2} - 2{\rm{x}}} \right) + 1 = 0\)

Phương pháp giải:

Đặt \({x^2} - 2x = t\) để đưa phương trình đã cho về phương trình bậc hai ẩn \(t.\)

Lời giải chi tiết:

Đặt \({x^2} - 2x = t\), ta thu được phương trình \(2{t^2} + 3t + 1 = 0\)

Phương trình trên có \(a - b + c = 2 - 3 + 1 = 0\) nên có hai nghiệm \(t =  - 1;t =  - \dfrac{1}{2}.\)

+ Với \(t =  - 1 \Rightarrow {x^2} - 2x =  - 1\\ \Leftrightarrow {x^2} - 2x + 1 = 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} = 0 \Leftrightarrow x = 1\)

+ Với \(t =  - \dfrac{1}{2} \Rightarrow {x^2} - 2x =  - \dfrac{1}{2}\\ \Leftrightarrow {x^2} - 2x + 1 = \dfrac{1}{2} \Leftrightarrow {\left( {x - 1} \right)^2} = \dfrac{1}{2}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = \dfrac{{\sqrt 2 }}{2}\\x - 1 =  - \dfrac{{\sqrt 2 }}{2}\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{2 + \sqrt 2 }}{2}\\x = \dfrac{{2 - \sqrt 2 }}{2}\end{array} \right.\)

Vậy phương trình đã cho có ba nghiệm \(x = 1;x = \dfrac{{2 + \sqrt 2 }}{2};x = \dfrac{{2 - \sqrt 2 }}{2}\)

LG b

LG b

\({\left( {x + {1 \over x}} \right)^2} - 4\left( {x + {1 \over x}} \right) + 3 = 0\)

Phương pháp giải:

Đặt \(x + \dfrac{1}{x} = t\) để đưa phương trình đã cho về phương trình bậc hai ẩn \(t.\)

Lời giải chi tiết:

ĐK: \(x \ne 0.\)

Đặt \(x + \dfrac{1}{x} = t\), ta thu được phương trình \({t^2} - 4t + 3 = 0\)

Phương trình trên có \(a + b + c = 1 + \left( { - 4} \right) + 3 = 0\) nên có hai nghiệm \(t = 1;t = 3.\)

+ Với \(t = 1 \Rightarrow x + \dfrac{1}{x} = 1 \Rightarrow {x^2} - x + 1 = 0\) .

Xét \(\Delta  = {\left( { - 1} \right)^2} - 4.1.1 =  - 3 < 0\) nên phương trình vô nghiệm.

+ Với \(t = 3 \Rightarrow x + \dfrac{1}{x} = 3\\ \Rightarrow {x^2} - 3x + 1 = 0\, (*)\) 

Phương trình (*) có \(\Delta  = {\left( { - 3} \right)^2} - 4.1.1 = 5 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{3 + \sqrt 5 }}{2}\\x = \dfrac{{3 - \sqrt 5 }}{2}\end{array} \right.\) (thỏa mãn)

Vậy phương trình đã cho có hai nghiệm \(x = \dfrac{{3 + \sqrt 5 }}{2};x = \dfrac{{3 - \sqrt 5 }}{2}\) .

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved