Bài 58 trang 13 SBT Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho đường tròn đường kính AB 2R nằm trong mặt phẳng \(\left( P \right)\) và một điểm M nằm trên đường tròn đó sao cho \(\widehat {MAB} = \alpha \). Trên đường thẳng vuông góc với \(\left( P \right)\) tại A, lấy điểm S sao cho SA=h. Gọi H và K lần lượt là hình chiếu vuông góc của A trên SM và SB.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Chứng minh rằng \(SB \bot mp\left( {KHA} \right)\).

Lời giải chi tiết:

Ta có \(BM \bot AM\) (vì M nằm trên đường tròn đường kính AB) và \(BM \bot SA\) (do \(SA \bot \left( P \right)\)), suy ra \(BM \bot \left( {SAM} \right) \Rightarrow BM \bot AH.\)

Mặt khác \(AH \bot SM,\) suy ra \(AH \bot SB,\)

Theo giả thiết , ta lại có \(AK \bot SB\)

Vậy \(SB \bot \left( {KHA} \right).\)

LG b

Gọi I là giao điểm của HK với \(\left( P \right)\). Hãy chứng minh AI là tiếp tuyến của đường tròn đã cho.

Lời giải chi tiết:

Vì \(SB \bot \left( {KHA} \right)\) nên \(SB \bot AI\), mặt khác \(SA \bot AI\) nên \(AI \bot AB\), mà AI thuộc \(mp\left( P \right)\), suy ra AI là tiếp tuyến của đường tròn đã cho tại điểm A.

LG c

Cho h = 2R, \(\alpha  = {30^0}\), tính thể tích khối chóp S.KHA.

Lời giải chi tiết:

Cách 1. Ta có :

\(\eqalign{  & {{{V_{S.KHA}}} \over {{V_{S.BMA}}}} = {{SK} \over {SB}}.{{SH} \over {SM}} = {{SK.SB} \over {S{B^2}}}.{{SH.SM} \over {S{M^2}}} \cr&= {{S{A^4}} \over {S{B^2}.S{M^2}}}  \cr  &  = {{(2R)^4} \over {\left( {4{R^2} + 4{R^2}} \right).\left( {4{R^2} + A{M^2}} \right)}} \cr&= {{2{R^2}} \over {4{R^2} + 4{R^2}.{{\cos }^2}\alpha }} = {1 \over {2\left( {1 + {{\cos }^2}\alpha } \right)}},  \cr  & {V_{S.BMA}} = {1 \over 3}{S_{BMA}}.SA = {1 \over 6}AM.BM.SA \cr&= {1 \over 6}2R\cos \alpha .2Rsin\alpha .2R  \cr  &  = {{2{R^3}} \over 3}\sin 2\alpha  = {{2{R^3}} \over 3}.{{\sqrt 3 } \over 2} = {{{R^3}\sqrt 3 } \over 2}. \cr} \)

Vậy \({V_{S.KHA}} = {1 \over {2\left( {1 + {{\cos }^2}\alpha } \right)}}.{{{R^3}\sqrt 3 } \over 3} \)

                      \(= {1 \over {2\left( {1 + {3 \over 4}} \right)}}.{{{R^3}\sqrt 3 } \over 3} = {{2{R^3}\sqrt 3 } \over {21}}\)

Cách 2. Dễ thấy \({V_{S.KHA}} = {1 \over 3}{S_{KHA}}.SK.\)

Dùng hệ thức lượng trong tam giác vuông, ta có thể tính được SK, AH, AK, HK ( với chú ý rằng tam giác KHA vuông ở H) theo R. Từ đó tính được thể tích khối chóp S.KHA.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved