Đề bài
Tìm đạo hàm của hàm số sau:
\(y = \left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}.\)
Lời giải chi tiết
\(\begin{array}{l}
y' = \left( {1 - x} \right)'{\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}\\ + \left( {1 - x} \right)\left[ {{{\left( {1 - {x^2}} \right)}^2}} \right]'{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}\left[ {{{\left( {1 - {x^3}} \right)}^3}} \right]'\\
= - 1.{\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right)\left[ {2\left( {1 - {x^2}} \right)\left( {1 - {x^2}} \right)'} \right]{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}\left[ {{{3\left( {1 - {x^3}} \right)}^2}\left( {1 - {x^3}} \right)'} \right]\\
= - {\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right)\left[ {2\left( {1 - {x^2}} \right).\left( { - 2x} \right)} \right]{\left( {1 - {x^3}} \right)^3}\\
+ \left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}\left[ 3{{{\left( {1 - {x^3}} \right)}^2}\left( { - 3{x^2}} \right)} \right]\\
= - {\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^3}\\
- 4x\left( {1 - x} \right)\left( {1 - {x^2}} \right){\left( {1 - {x^3}} \right)^3}\\
- 9{x^2}\left( {1 - x} \right){\left( {1 - {x^2}} \right)^2}{\left( {1 - {x^3}} \right)^2}
\end{array}\)
Phần một. Một số vấn đề về kinh tế - xã hội thế giới
Chủ đề 3. Quá trình giành độc lập dân tộc của các quốc gia Đông Nam Á
Unit 3: Global warming
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
Bài 6. Tiết 2: Kinh tế Hoa Kì - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11