Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Phân tích thành nhân tử (với \(a,\ b,\ x,\ y\) là các số không âm)
LG a
LG a
\(ab + b\sqrt a + \sqrt a + 1\)
Phương pháp giải:
+ Phân tích đa thức thành nhân tử bằng cách sử dụng:
-Phương pháp đặt nhân tử chung
- Phương pháp nhóm hạng tử.
- Phương pháp dùng hằng đẳng thức
+ Sử dụng: \(\sqrt a.\sqrt a=a,\) với \(a \ge 0\).
Lời giải chi tiết:
Ta có:
\(ab+b\sqrt{a}+\sqrt{a}+1=(ab+b\sqrt{a})+(\sqrt{a}+1)\)
\(=(ba+b\sqrt{a})+(\sqrt{a}+1)\)
\(=\left( {b. {\sqrt a .\sqrt a } + b\sqrt a} \right)+ \left( {\sqrt a + 1} \right)\)
\(=[(b\sqrt a).\sqrt a+ b\sqrt a.1]+(\sqrt a + 1)\)
\(=b\sqrt{a}(\sqrt{a}+1)+(\sqrt{a}+1)\)
\(=(\sqrt{a}+1)(b\sqrt{a}+1)\).
LG b
LG b
\(\sqrt {{x^3}} - \sqrt {{y^3}} + \sqrt {{x^2}y} - \sqrt {x{y^2}} \)
Phương pháp giải:
+ Phân tích đa thức thành nhân tử bằng cách sử dụng:
-Phương pháp đặt nhân tử chung
- Phương pháp nhóm hạng tử.
- Phương pháp dùng hằng đẳng thức
+ Sử dụng hằng đẳng thức:
\(a^2+2ab+b^2=(a+b)^2\)
\((a-b)(a+b)=a^2-b^2\)
\(a^3-b^3=(a-b)(a^2+ab+b^2)\)
+ \((\sqrt a)^2=a,\) với \(a \ge 0\).
Lời giải chi tiết:
Ta có:
Cách 1: Sử dụng hằng đẳng thức số \(7\):
\(\sqrt{x^{3}}-\sqrt{y^{3}}+\sqrt{x^{2}y}-\sqrt{xy^{2}}\)
\(=[(\sqrt x)^3-(\sqrt y)^3]+ (\sqrt{x.xy}-\sqrt{y.xy})\)
\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2]\)
\(+ (\sqrt{x}.\sqrt{xy}-\sqrt{y}.\sqrt{xy})\)
\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2]\)
\(+ \sqrt{xy}.(\sqrt{x}-\sqrt{y})\)
\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2+\sqrt{xy}]\)
\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + 2\sqrt x.\sqrt y+(\sqrt y)^2]\)
\(=(\sqrt x-\sqrt y).(\sqrt x+\sqrt y)^2\).
Cách 2: Nhóm các hạng tử:
\(\sqrt{x^{3}}-\sqrt{y^{3}}+\sqrt{x^{2}y}-\sqrt{xy^{2}}\)
\(=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\) (vì x, y>0)
\(=(x\sqrt{x}+x\sqrt{y})-(y\sqrt{x}+y\sqrt{y})\)
\(=x(\sqrt{x}+\sqrt{y})-y(\sqrt{y}+\sqrt{x})\)
\(=(\sqrt{x}+\sqrt{y})(x-y)\)
\(=(\sqrt{x}+\sqrt{y})(\sqrt x+\sqrt y)(\sqrt x -\sqrt y)\)
\(=(\sqrt{x}+\sqrt{y})^2(\sqrt{x}-\sqrt{y})\).
Bài 38. Phát triển tổng hợp kinh tế và bảo vệ tài nguyên, môi trường Biển - Đảo
Bài 30
Đề thi vào 10 môn Văn Hưng Yên
Đề thi vào 10 môn Văn Thái Nguyên
Đề thi vào 10 môn Toán Cần Thơ