PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 54 trang 89 sgk Toán lớp 9 tập 2

Đề bài

Tứ giác \(ABCD\) có \(\widehat{ABC}+ \widehat{ADC}= 180^0\). Chứng minh rằng các đường trung trực của \(AC,\, BD, \,AB\) cùng đi qua một điểm.

Phương pháp giải - Xem chi tiết

+) Nếu một tứ giác có tổng số đo hai góc đối diện bằng \(180^0\) thì tứ giác đó là tứ giác nội tiếp.

+) Các điểm thuộc đường trung trực của một đoạn thẳng đều cách đều hai đầu mút của đoạn thẳng đó.

Lời giải chi tiết

 

Tứ giác \(ABCD\) có \(\widehat{ABC}+ \widehat{ADC}= 180^0\) mà hai góc \(\widehat{ABC}\) và \( \widehat{ADC}\) là hai góc ở vị trí đối nhau nên tứ giác \(ABCD\) là tứ giác nội tiếp.

Gọi \(O\) là tâm đường tròn ngoại tiếp tứ giác \(ABCD\), khi đó \(OA=OB=OC=OD\) (cùng bằng bán kính của đường tròn \( (O) \) )

+ Vì   \(OA = OB\) nên \(O\) thuộc đường trung trực của đoạn \(AB\) (định lí)

+ Vì   \(OA = OC\) nên \(O\) thuộc đường trung trực của đoạn \(AC\) (định lí)

+ Vì   \(OD = OB\) nên \(O\) thuộc đường trung trực của đoạn \(BD\) (định lí)

Do đó các đường trung trực của \(AB, \, BD, \, AC\) cùng đi qua tâm \(O\) của đường tròn ngoại tiếp tứ giác \(ABCD\). 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved