Bài 50 trang 127 Sách bài tập Hình học lớp 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hai mặt phẳng song song có phương trình

\(Ax + By + Cz + D = 0\) và \(Ax + By + Cz + E = 0\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tìm khoảng cách giữa hai mặt phẳng đó.

Lời giải chi tiết:

Giả sử \(A \ne 0\), khi đó mặt phẳng thứ nhất cắt trục Ox tại điểm \({M_0},{M_0} = \left( { - {D \over A};0;0} \right).\) Khoảng cách từ \({M_0}\) tới mặt phẳng thứ hai chính là khoảng cách d giữa hai mặt phẳng đó.

Vậy \(d = {{\left| { - A.{D \over A} + E} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }} = {{\left| {E - D} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }}.\)

LG b

Viết phương trình mặt phẳng song song và cách đều hai mặt phẳng đó.

Lời giải chi tiết:

Mặt phẳng \(\left( \alpha  \right)\) song song với hai mặt phẳng đã cho có phương trình

\(Ax + By + Cz + F = 0\left( {F \ne D,F \ne E} \right)\)

Để \(\left( \alpha  \right)\) cách đều cả hai mặt phẳng đã cho thì

\(\eqalign{  & {{\left| {F - D} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }} = {{\left| {F - E} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }}.  \cr  &  \Leftrightarrow \left| {F - D} \right| = \left| {F - E} \right| \Leftrightarrow F - D =  \pm \left( {F - E} \right). \cr} \)

Vì \(D \ne E,\) nên ta phải có \(F - D =  - F + E \Rightarrow F = {{D + E} \over 2}.\)

Vậy phương trình mặt phẳng \(\left( \alpha  \right)\) là :

\(Ax + By + Cz + {{D + E} \over 2} = 0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved