Bài 5 trang 81 SGK Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho điểm \(M\left( {a;b;c} \right)\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Tìm toạ độ hình chiếu (vuông góc) của M trên các mặt phẳng toạ độ và trên các trục toạ độ.

Phương pháp giải:

Dựng hình suy ra tọa độ các điểm.

Lời giải chi tiết:

Hình chiếu của M lên mp(Oxy) tọa độ là: \(M_1\)(a, b, 0)

Tương tự, hình chiếu của M lên mp(Oxz) và mp(Oyz) lần lượt có tọa độ là: \(M_2\)(a, 0, c) và \(M_3\)(0, b, c).

Hình chiếu của M lên các trục Ox, Oy, Oz lần lượt có tọa đố là: \(M_4\)(a, 0, 0), \(M_5\)(0, b, 0), \(M_6\)(0, 0, c).

LG b

Tìm khoảng cách từ điểm M đến các mặt phẳng toạ độ, đến các trục toạ độ.

Lời giải chi tiết:

Khoảng cách từ M đến (Oxy) là:

\(\eqalign{
& d\left( {M;\left( {Oxy} \right)} \right) = M{M_1} \cr &= \sqrt {{{\left( {a - a} \right)}^2} + {{\left( {b - b} \right)}^2} + {{\left( {c - 0} \right)}^2}} = \left| c \right| \cr 
& d\left( {M;\left( {Oyz} \right)} \right) = \left| a \right|;d\left( {M;\left( {Oxz} \right)} \right) = \left| b \right| \cr 
& d\left( {M;Ox} \right) = M{M_4} \cr &= \sqrt {{{\left( {a - a} \right)}^2} + {{\left( {b - 0} \right)}^2} + {{\left( {c - 0} \right)}^2}} \cr &= \sqrt {{b^2} + {c^2}} \cr 
& d\left( {M;Oy} \right) = \sqrt {{a^2} + {c^2}} ,\cr & d\left( {M;Oz} \right) = \sqrt {{a^2} + {b^2}} \cr} \)

LG c

Tìm toạ độ của các điểm đối xứng với M qua các mặt phẳng toạ độ.

Lời giải chi tiết:

Gọi \(M_1'\left( {x;y;z} \right)\) là điểm đối xứng của M qua mp(Oxy) thì \({M_1}\) là trung điểm của \(MM_1'\) nên

\(\left\{ \matrix{
{x_{{M_1}}} = {{{x_M} + {x_{M_1'}}} \over 2} \hfill \cr 
{y_{{M_1}}} = {{{y_M} + {y_{M_1'}}} \over 2} \hfill \cr 
{z_{{M_1}}} = {{{z_M} + {z_{M_1'}}} \over 2} \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
{x_{M_1'}} = 2{x_{{M_1}}} - {x_M} = 2a - a = a \hfill \cr 
{y_{M_1'}} = 2{y_{{M_1}}} - {y_M} = 2b - b = b \hfill \cr 
{z_{M_1'}} = 2{z_{{M_1}}} - {z_M} = 0 - c = - c \hfill \cr} \right. \) \(\Rightarrow M_1'\left( {a;b; - c} \right)\)

Tương tự \(M_2'\left( { - a;b;c} \right)\) là điểm đối xứng của M qua mp(Oyz)
Và \(M_3'\left( {a; - b;c} \right)\) là điểm đối xứng của M qua mp(Oxz).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved