Toán 10 tập 1 - Chân trời sáng tạo

Bài 5 trang 59

Đề bài

Biết rằng hàm số \(y = 2{x^2}{\rm{ +  }}mx + n\) giảm trên khoảng \(\left( { - \infty ;1} \right),\)tăng trên khoảng \(\left( {1; + \infty } \right)\) và có tập giá trị là \([9; + \infty )\). Xác định giá trị của m và n.

Phương pháp giải - Xem chi tiết

Từ tập giá trị suy ra GTNN của hàm số bằng 9.

Lập bảng biến thiên, xác định giá trị nhỏ nhất của hàm số.

Lời giải chi tiết

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - m}}{{2.2}} =  - \frac{m}{4};{y_S} = f( - \frac{m}{4})\)

Vì hàm số bậc hai có \(a = 2 > 0\) nên ta có bảng biến thiên sau:

 

Hàm số đạt giá trị nhỏ nhất bằng \(f( - \frac{m}{4}).\)

Hàm số giảm trên \(( - \infty ; - \frac{m}{4})\) và tăng trên \(( - \frac{m}{4}; + \infty )\)

Theo giả thiết, ta có:

Hàm số giảm trên khoảng \(\left( { - \infty ;1} \right)\)\( \Rightarrow \left( { - \infty ;1} \right) \subset ( - \infty ; - \frac{m}{4}) \Leftrightarrow 1 \le  - \frac{m}{4}.\)

Tương tự hàm số tăng trên khoảng \(\left( {1; + \infty } \right)\)\( \Rightarrow \left( {1; + \infty } \right) \subset ( - \frac{m}{4}; + \infty ) \Leftrightarrow  - \frac{m}{4} \le 1.\)

Do đó: \( - \frac{m}{4} = 1\) hay \(m =  - 4\)

Lại có: Tập giá trị là \([9; + \infty )\)\( \Rightarrow \)Giá trị nhỏ nhất của hàm số bằng 9.

\( \Leftrightarrow f(1) = f( - \frac{m}{4}) = 9 \Leftrightarrow {2.1^2} + ( - 4).1 + n = 9 \Leftrightarrow n = 11.\)

Vậy \(m =  - 4,n = 11.\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved