Bài 5 trang 54 SBT Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho tam giác đều ABC cạnh a. Gọi (P) là mặt phẳng qua cạnh BC và vuông góc với mp(ABC). Gọi (C) là đường tròn đường kính BC trong mp(P) và S là điểm bất kì thuộc (C). Khi S thay đổi trên (C), chứng minh rằng :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

\(S{A^2} + S{B^2} + S{C^2}\) không đổi

Lời giải chi tiết:

Vì \(\widehat {BSC} = \)  \({90^ \circ }\) nên \(S{B^2} + S{C^2} = B{C^2} = {a^2}.\)

Gọi H là trung điểm của BC thì

\(SH = {1 \over 2}BC = {a \over 2}\) và \(AH \bot BC.\)

Mặt khác, \(\left( P \right) \bot mp\left( {ABC} \right)\) và cắt mặt phẳng này theo giao tuyến BC nên \(AH \bot (P).\)

Từ đó \(S{A^2} = S{H^2} + A{H^2} = {{{a^2}} \over 4} + {{3{a^2}} \over 4} = {a^2}.\)

Vậy \(S{A^2} + S{B^2} + S{C^2} = {a^2} + {a^2} = 2{a^2}.\)

LG b

Tâm mặt cầu ngoại tiếp tứ diện SABC là điểm cố định ( nếu S khác B, C).

Lời giải chi tiết:

Vì HB = HC = HS, \(AH \bot mp(SBC)\) nên đường thẳng AH là trục của đường tròn ngoại tiếp \(\Delta SBC\).

Do đó, tâm mặt cầu ngoại tiếp tứ diện SABC thuộc AH. Mặt khác, ABC là tam giác đều nên tâm mặt cầu đó chính là tâm đường tròn ngoại tiếp tam giác ABC và bán kính mặt cầu bằng bán kính đường tròn ngoại tiếp tam giác ABC.

Điều ấy khẳng định rằng mặt cầu ngoại tiếp tứ diện SABC là cố định.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved