PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 5 trang 37 sgk Toán 9 tập 2

Đề bài

Cho ba hàm số:

\(y = \dfrac{1}{2}{x^2};\ y = {x^2};\ y = 2{x^2}\).

a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.

b) Tìm ba điểm \(A,\  B,\ C\) có cùng hoành độ \(x = -1,5\) theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.

c) Tìm ba điểm \(A',\  B',\  C'\) có cùng hoành độ \(x = 1,5\) theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của \(A\) và \(A'\), \(B\) và \(B'\), \(C\) và \(C'\).

d) Với mỗi hàm số trên, hãy tìm giá trị của \(x\) để hàm số đó có giá trị nhỏ nhất.

Phương pháp giải - Xem chi tiết

+)  Cách vẽ đồ thị hàm số \(y=ax^2\).

Bước 1: Xác định các điểm \((1; a)\) và \((2; 4a)\) và các điểm đối xứng của chúng qua \(Oy\).  

Bước 2: Vẽ parabol đi qua gốc \(O(0;0)\) và các điểm trên.

+) Thay hoành độ \(x=x_0\) vào hàm số \(y=ax^2\) ta tìm được tung độ \(y\) tương ứng.

+) Áp dụng tính chất: Nếu \(a > 0\) thì đồ thị nằm phía trên trục hoành và \(O\) là điểm thấp nhất của đồ thị.

Lời giải chi tiết

 

a) +) Vẽ đồ thị hàm số \(y = \dfrac{1}{2}{x^2}\)

Cho \(x=1 \Rightarrow y=\dfrac{1}{2}\). Đồ thị đi qua \({\left(1; \dfrac{1}{2} \right)}\).

Cho \(x=-1 \Rightarrow y=\dfrac{1}{2}\). Đồ thị đi qua \({\left(-1; \dfrac{1}{2} \right)}\).

Cho \(x=2 \Rightarrow y=\dfrac{1}{2}. 2^2=2\). Đồ thị hàm số đi qua điểm \((2; 2)\).

Cho \(x=-2 \Rightarrow y=\dfrac{1}{2}.(-2)^2=2\). Đồ thị hàm số đi qua điểm \((-2; 2)\).

Đồ thị hàm số \(y=\dfrac{1}{2}x^2\) là parabol đi qua gốc tọa độ và các điểm trên.

+) Vẽ đồ thị hàm số \(y=x^2\).

Cho \(x=1 \Rightarrow y=1\). Đồ thị đi qua \((1; 1)\).

Cho \(x=-1 \Rightarrow y=(-1)^2\). Đồ thị đi qua \((-1; 1)\).

Cho \(x=2 \Rightarrow y=2^2=4\). Đồ thị hàm số đi qua điểm \((2; 4)\).

Cho \(x=-2 \Rightarrow y=(-2)^2=4\). Đồ thị hàm số đi qua điểm \((-2; 4)\).

Đồ thị hàm số \(y=x^2\) là parabol đi qua gốc tọa độ và các điểm trên.

+) Vẽ đồ thị hàm số \(y=2x^2\).

Cho \(x=1 \Rightarrow y=2.1^2=2\). Đồ thị đi qua \((1; 2)\).

Cho \(x=-1 \Rightarrow y=2.(-1)^2\). Đồ thị đi qua \((-1; 2)\).

Cho \(x=2 \Rightarrow y=2.2^2=8\). Đồ thị hàm số đi qua điểm \((2; 8)\).

Cho \(x=-2 \Rightarrow y=2.(-2)^2=8\). Đồ thị hàm số đi qua điểm \((-2; 8)\).

Đồ thị hàm số \(y=2x^2\) là parabol đi qua gốc tọa độ và các điểm trên.

   

b) 

Xác định điểm P trên trục Ox có hoành độ \(x =  - 1,5\). Qua P kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A;B;C\)

Gọi \({y_A},{y_B},{y_C}\) lần lượt là tung độ các điểm \(A,\ B,\ C\). Ta có:

\(\eqalign{
& {y_A} = {1 \over 2}{( - 1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr 
& {y_B} = {( - 1,5)^2} = 2,25 \cr 
& {y_C} = 2{( - 1.5)^2} = 2.2,25 = 4,5 \cr} \)

 

c) Xác định điểm \(P'\)  trên trục Ox có hoành độ \(x = 1,5\). Qua \(P'\)  kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A';B';C'\)

Gọi \({y_{A'}},{y_{B'}},{y_{C'}}\)  lần lượt là tung độ các điểm \(A', B', C'\) . Ta có:

\(\eqalign{
& {y_{A'}} = {1 \over 2}{(1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr 
& {y_{B'}} = {(1,5)^2} = 2,25 \cr 
& {y_{C'}} = 2{(1.5)^2} = 2.2,25 = 4,5 \cr} \)

Kiểm tra tính đối xứng: \(A\) và \(A'\), \(B\) và \(B'\), \(C\) và \(C'\) đối xứng với nhau qua trục tung \(Oy\).

d) Với mỗi hàm số đã cho ta đều có hệ số \(a > 0\) nên O là điểm thấp nhất của đồ thị.

Vậy với  \(x = 0\) thì các hàm số trên đều có giá trị nhỏ nhất \(y=0.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved