Bài 5 trang 223 Sách bài tập Hình học lớp 12 Nâng cao.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho khối lăng trụ tam giác đều ABC.A'B'C' có chiều cao bằng h và hai đường thẳng AB' và BC vuông góc với nhau.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Gọi M' là trung điểm của A'B'. Chứng minh rằng \(AB' \bot BM'.\)

Lời giải chi tiết:

(h.109)

Ta có C'M' \( \bot \) A'B, C'M' \( \bot \) AA' => C'M' \( \bot \) (ABB'A') => C'M' \( \bot \) AB.

Mặt khác, theo giả thiết BC' \( \bot \) AB', suy ra AB' \( \bot \) mp(BC'M').

Do đó AB' \( \bot \) BM'.

LG b

Tính độ dài đoạn thẳng A'B' theo h.

Lời giải chi tiết:

Từ kết quả của câu a), ta dễ dàng suy ra

\(\Delta BB'M'\) đồng dạng \( \Delta B'A'A\)

\(\eqalign{  &  \Rightarrow {{A'B'} \over {BB'}} = {{A'A} \over {B'M'}}  \cr  &  \Rightarrow A'B'.B'M' = A'A.BB'  \cr  &  \Rightarrow {1 \over 2}A'B{'^2} = {h^2}  \cr  &  \Rightarrow A'B' = h\sqrt 2 . \cr} \)

LG c

Tính thể tích khối lăng trụ đã cho.

Lời giải chi tiết:

\({V_{ABC.A'B'C'}} = {S_{A'B'C'}}.AA'\)

                          \(= {\left( {h\sqrt 2 } \right)^2}.{{\sqrt 3 } \over 4}h = {{\sqrt 3 } \over 2}{h^3}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved