Bài 5 trang 175 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho tam giác ABC cân tại A. Trên cạnh BC lần lượt lấy hai điểm M và N sao cho MN = MN = NC. Gọi H là trung điểm của BC.

a) Chứng minh rằng AM = AN.

b) Chứng minh rằng \(AH \bot BC.\)

c) Cho biết AB = 5 cm, BC = 6 cm. Tính AM.

Lời giải chi tiết

 

a)Xét tam giác ABM và CAN ta có:

AB = AC (tam giác ABC cân tại A)

\(\widehat {ABM} = \widehat {ACN}(\Delta ABC\)  cân tại A)

BM = CN (giả thiết)

Do đó: \(\Delta ABM = \Delta ACN(c.g.c) \Rightarrow AM = AN.\)

b)Xét hai tam giác ABH và ACH ta có:

AB = AC (tam giác ABC cân tại A)

BH = CH (H là trung điểm BC)

AH là cạnh chung.

Do đó: \(\Delta ABH = \Delta ACH(c.c.c) \Rightarrow \widehat {AHB} = \widehat {AHC}.\)

Mà \(\widehat {AHB} + \widehat {AHC} = {180^0}\)   (hai góc kề bù)

Nên \(\widehat {AHB} + \widehat {AHB} = {180^0} \Rightarrow 2\widehat {AHB} = {180^0} \Rightarrow \widehat {AHB} = {90^0}.\)   Vậy \(AH \bot BC.\)

c) Ta có: \(\eqalign{  & BH = HC = {{BC} \over 2} = {6 \over 2} = 3cm  \cr  & BM = MN = NC = {{BC} \over 2} = {6 \over 3} = 2cm  \cr  & BM + MH = BH \Rightarrow MH = BH - BM = 3 - 2 = 1(cm). \cr} \)

Tam giác ABH vuông tại H \(\Rightarrow A{B^2} = A{H^2} + B{H^2}\)   (định lí Pythagore)

Do đó: \(A{H^2} = A{B^2} - B{H^2} = {5^2} - {3^2} = 16,AH > 0\)  Vậy \(AH = \sqrt {16}  = 4(cm).\)

Tam giác AMH vuông tại H \(\Rightarrow A{M^2} = A{H^2} + M{H^2}\)   (định lí Pythagore)

Do đó: \(A{M^2} = {4^2} + {1^2} = 16 + 1 = 17\)

Mà AM > 0. Vậy \(AM = \sqrt {17} (cm).\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved