Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Từ một miếng tôn hình chữ nhật người ta cắt ở bốn góc bốn hình vuông có cạnh bằng \(5\) dm để làm thành một cái thùng hình hộp chữ nhật không nắp có dung tích \(1500\) dm3 (h.15). Hãy tính kích thước của miếng tôn lúc đầu, biết rằng chiều dài của nó gấp đôi chiều rộng.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Các bước giải bài toán bằng cách lập phương trình
Bước 1: Lập phương trình
1) Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
2) Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
3) Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình, đối chiếu với điều kiện ban đầu và kết luận.
Chú ý: Thể tích hình hộp chữ nhật bằng tích của chiều dài, chiều rộng và chiều cao.
Lời giải chi tiết
Gọi chiều rộng của miếng tôn là \(x\) (dm), \(x > 10\).
Chiều dài của nó là \(2x\) (dm)
Khi làm thành một cái thùng hình hộp chữ nhật không nắp thì chiều dài của thùng là \(2x - 10\) (dm), chiều rộng là \(x - 10\) (dm), chiều cao là \(5\) (dm).
Dung tích của thùng là \(5(2x - 10)(x - 10)\) \((dm^3)\)
Theo đầu bài ta có phương trình:
\(\begin{array}{l}
5\left( {2x - 10} \right)\left( {x - 10} \right) = 1500\\
\Leftrightarrow 5\left( {2{x^2} - 20x - 10x + 100} \right) = 1500\\
\Leftrightarrow 2{x^2} - 30x + 100 = 300\\
\Leftrightarrow {x^2} - 15x - 100 = 0
\end{array}\)
Giải phương trình: \(\Delta = 225 + 400 = 625 >0\), \(\sqrt{\Delta} = 25\)
Suy ra \({x_1} = 20, {x_2} = -5\) (loại)
Vậy miếng tôn có chiều rộng bằng 20 (dm), chiều dài bằng 40 (dm).
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Sinh học lớp 9
Đề thi, đề kiểm tra học kì 1 - Địa lí 9
Bài 8: Năng động, sáng tạo
Bài 10: Lý tưởng sống của thanh niên
Unit 6: Viet Nam: then and now