Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho tam giác \(ABC\) vuông ở \(A\), có cạnh \(BC\) cố định. Gọi \(I\) là giao điểm của ba đường phân giác trong. Tìm quỹ tích điểm \(I\) khi \(A\) thay đổi.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Tính góc \(\widehat {BIC}\) rồi kết luận theo quỹ tích cung chứa góc dựng trên đoạn BC.
+ Sử dụng: Với đoạn thẳng \(BC\) và góc \(\alpha\, \, (0^0 < \alpha < 180^0)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat{CMB}=\alpha\) là hai cung chứa góc \(\alpha\) dựng trên đoạn \(CB.\)
Lời giải chi tiết
* Dự đoán : Quỹ tích điểm I là cung chứa góc 135º dựng trên đoạn BC.
* Chứng minh :
Phần thuận :
Điểm A luôn nhìn đoạn thẳng AB dưới một góc \(90^\circ \) nên quỹ tích điểm \(A\) là đường tròn đường kính \(BC.\)
Xét tam giác \(ABC\) vuông tại \(A\) nên \(\widehat {ACB} + \widehat {ABC} = 90^\circ \), lại có \(BI\) là phân giác góc \(B\) và \(CI\) là phân giác góc \(C\) nên
\(\widehat {ICB} = \dfrac{1}{2}\widehat {ACB};\,\widehat {IBC} = \dfrac{1}{2}\widehat {ABC} \Rightarrow \widehat {ICB} + \widehat {IBC} = \dfrac{1}{2}\left( {\widehat {ACB} + \widehat {ABC}} \right) = \dfrac{1}{2}.90^\circ = 45^\circ \)
Xét tam giác \(IBC\) có \(\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = 180^\circ \Leftrightarrow \widehat {BIC} = 180^\circ - 45^\circ = 135^\circ \)
Nên số đo góc \(BIC\) luôn không đổi.
Vậy khi điểm A thay đổi trên đường tròn đường kính BC thì điểm I thay đổi và luôn nhìn đoạn thẳng BC dưới một góc \(135^\circ .\)
Vậy điểm I thuộc hai cung chứa góc \(135^\circ \) dựng trên đoạn BC.
Phần đảo:
Chứng minh mọi điểm I thuộc cung chứa góc 135º dựng trên đoạn BC, đều có tam giác ABC thỏa mãn điều kiện.
+ Lấy I trên cung chứa góc 135º dựng trên đoạn BC
+ Kẻ tia Bx sao cho BI là phân giác của góc CBx
+ Kẻ tia Cy sao cho CI là phân giác của góc BCy
+ Bx cắt Cy tại A.
Khi đó I là giao điểm của hai đường phân giác trong tam giác ABC
Ta có:
\(\begin{array}{l}
\widehat {BAC} = {180^0} - \left( {\widehat B + \widehat C} \right)\\
= {180^0} - 2\left( {\widehat {IBC} + \widehat {ICB}} \right)\\
= {180^0} - 2\left( {{{180}^0} - \widehat {BIC}} \right)\\
= {180^0} - {360^0} + {2.135^0}\\
= {90^0}
\end{array}\)
Vậy ΔABC vuông tại A thỏa mãn đề bài.
Kết luận: Quĩ tích các điểm I là hai cung chứa góc \(135^\circ \) dựng trên đoạn BC.
Đề thi học kì 2
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Giáo dục công dân lớp 9
Đề kiểm tra 1 tiết - Chương 8 - Sinh 9
Đề thi vào 10 môn Văn Phú Thọ
Đề thi vào 10 môn Toán Khánh Hòa