Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Ôn tập chương I. Tứ giác
Đề kiểm tra 15 phút - Chương 1
Đề kiểm tra 45 phút (1 tiết) - Chương 1
Đề bài
Gọi \(O\) là điểm nằm trong hình bình hành \(ABCD.\) Chứng minh rằng tổng diện tích của hai tam giác \(ABO\) và \(CDO\) bằng tổng diện tích của hai tam giác \(BCO\) và \(DAO.\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính diện tích tam giác, diện tích hình bình hành.
Lời giải chi tiết
Từ \(O\) kẻ đường thẳng \(d\) vuông góc với \(AB\) ở \({H_1}\), cắt \(CD\) ở \({H_2}.\)
Ta có \(O{H_1} ⊥ AB\) (theo cách vẽ)
Mà \(AB // CD\) (vì \(ABCD\) là hình bình hành)
Nên \(O{H_2} ⊥ CD\)
Do đó \({S_{ABO}} + {S_{CDO}} \)
\( = \dfrac{1}{2}O{H_1}.AB + \dfrac{1}{2}O{H_2}.CD\)
\( = \dfrac{1}{2}O{H_1}.AB + \dfrac{1}{2}O{H_2}.AB\) (vì \(AB=CD\))
\(= \dfrac{1}{2}AB\left( {O{H_1} + O{H_2}} \right)\)
\(= \dfrac{1}{2}.AB.{H_1}{H_2}\)
\( \Rightarrow {S_{ABO}} + {S_{CDO}} = \dfrac{1}{2}{S_{ABCD}}\) ( 1) (do \(S_{ABCD}=H_1H_2.AB)\)
Mà \({S_{BCO}} + {S_{DAO}}+{S_{ABO}} + {S_{CDO}} ={S_{ABCD}}\)
Suy ra \({S_{BCO}} + {S_{DAO}} = \dfrac{1}{2}{S_{ABCD}}\) (2)
Từ (1) và (2) suy ra:
\({S_{ABO}} + {S_{CDO}} = {S_{BCO}} + {S_{DAO}}\)
Tác giả - Tác phẩm Ngữ văn 8 kì 1
Unit 7. Ethnic groups in Việt Nam
Chủ đề 4. Nhịp điệu quê hương
Chủ đề 7. Giai điệu bốn phương
Tải 20 đề kiểm tra 15 phút học kì 1 Văn 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8