PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

Bài 43 trang 53 sgk toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.
LG d.

Tìm x sao cho:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.
LG d.

LG a.

LG a.

Giá trị của biểu thức \(5 - 2x\) là số dương;

Phương pháp giải:

Áp dụng quy tắc chuyển vế, quy tắc nhân với một số.

Lời giải chi tiết:

Ta có bất phương trình \(5 – 2x > 0\).

\(⇔5 > 2x\)

\(⇔ x < \dfrac{5}{2}\)

Vậy để \(5 - 2x\) là số dương thì \(x < \dfrac{5}{2}\)

LG b.

LG b.

Giá trị của biểu thức \(x + 3\) nhỏ hơn giá trị của biểu thức \(4x - 5\);

Phương pháp giải:

Áp dụng quy tắc chuyển vế, quy tắc nhân với một số.

Lời giải chi tiết:

Ta có bất phương trình: \(x + 3 < 4x - 5\)

\(⇔x - 4x < -5 - 3\)

\(⇔-3x < -8\)

\(⇔x > \dfrac{8}{3}\)

Vậy để cho \(x + 3\) nhỏ hơn \(4x - 5\) thì \(x >\dfrac{8}{3}\) .

LG c.

LG c.

Giá trị của biểu thức \(2x +1\) không nhỏ hơn giá trị của biểu thức \(x + 3\);

Phương pháp giải:

Áp dụng quy tắc chuyển vế, quy tắc nhân với một số.

Lời giải chi tiết:

Ta có bất phương trình: \(2x +1 ≥ x + 3\)

\(⇔  2x - x ≥ 3 - 1\) 

\(⇔ x ≥ 2\) 

Vậy để cho \(2x +1\) không nhỏ hơn giá trị của biểu thức \(x + 3\) thì \(x ≥ 2\)

LG d.

LG d.

Giá trị của biểu thức \({x^2} + 1\) không lớn hơn giá trị của biểu thức \({\left( {x - 2} \right)^2}\).

Phương pháp giải:

Áp dụng quy tắc chuyển vế, quy tắc nhân với một số.

Lời giải chi tiết:

Ta có bất phương trình: \({x^2} + 1 \leqslant {\left( {x - 2} \right)^2}\)

\(\eqalign{
& \Leftrightarrow {x^2} + 1 \le {x^2} - 4x + 4 \cr 
& \Leftrightarrow {x^2} - {x^2} + 4x \le 4 - 1 \cr 
& \Leftrightarrow 4x \le 3 \cr 
& \Leftrightarrow x \le {3 \over 4} \cr} \)

Vậy giá trị của biểu thức \({x^2} + 1\) không lớn hơn giá trị của biểu thức \({\left( {x - 2} \right)^2}\) thì \(x \leqslant \dfrac{3}{4}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved