PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 42 trang 27 SGK Toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Giải hệ phương trình\(\left\{ \matrix{2{\rm{x}} - y = m \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 \hfill \cr} \right.\) trong mỗi trường hợp sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

\(m = -\sqrt{2}\) 

Phương pháp giải:

Cách 1: Giải hệ phương trình đã cho bằng phương pháp thế hoặc cộng đại số để tìm được \(x, y\) theo \(m.\) Sau đó thay từng giá trị m vào ta tìm được nghiệm cụ thể.

Cách 2: Thay từng giá trị \(m\) vào hệ phương trình rồi dùng phương pháp thế hoặc cộng đại số để giải hệ phương trình thu được.

Lời giải chi tiết:

(I) \(\left\{ \matrix{2{\rm{x}} - y = m(1) \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 (2) \hfill \cr} \right.\)

Ta có (1) ⇔ \(y = 2x – m\) (3)

Thế (3) vào (2), ta có:

\(4{\rm{x}} - {m^2}\left( {2{\rm{x}} - m} \right) = 2\sqrt 2\)

\(\Leftrightarrow 4.x - 2.m^2 . x + m^3 = 2\sqrt 2\)

 \(\Leftrightarrow 4.x - 2.m^2 . x = 2\sqrt 2 - m^3\)

\( \Leftrightarrow 2\left( {2 - {m^2}} \right)x = 2\sqrt 2  - {m^3}(*)\) 

Với \(m = - \sqrt{2}\). Thế vào phương trình (*), ta được:

\(2(2 – 2)x = 2\sqrt{2} + 2\sqrt{2} ⇔ 0x = 4\sqrt{2}\) (vô lý)

Vậy hệ phương trình đã cho vô nghiệm.

LG b

LG b

\(m = \sqrt{2}\)

Phương pháp giải:

Cách 1: Giải hệ phương trình đã cho bằng phương pháp thế hoặc cộng đại số để tìm được \(x, y\) theo \(m.\) Sau đó thay từng giá trị m vào ta tìm được nghiệm cụ thể.

Cách 2: Thay từng giá trị \(m\) vào hệ phương trình rồi dùng phương pháp thế hoặc cộng đại số để giải hệ phương trình thu được.

Lời giải chi tiết:

(I) \(\left\{ \matrix{2{\rm{x}} - y = m(1) \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 (2) \hfill \cr} \right.\)

Ta có (1) ⇔ \(y = 2x – m\) (3)

Thế (3) vào (2), ta có:

\(4{\rm{x}} - {m^2}\left( {2{\rm{x}} - m} \right) = 2\sqrt 2\)

\( \Leftrightarrow 2\left( {2 - {m^2}} \right)x = 2\sqrt 2  - {m^3}(*)\) 

Với \(m = \sqrt{2}\). Thế vào phương trình (*), ta được:

\(2(2 – 2)x = 2\sqrt{2} - 2\sqrt{2} ⇔ 0x = 0\) (luôn đúng)

Phương trình trên nghiệm đúng với mọi x ∈ R, khi đó \(y = 2x – \sqrt 2\)

Vậy hệ trình này có vô số nghiệm dạng \((x;2x-\sqrt 2)\) với \(x\in R\). 

LG c

LG c

\(m = 1\)

Phương pháp giải:

Cách 1: Giải hệ phương trình đã cho bằng phương pháp thế hoặc cộng đại số để tìm được \(x, y\) theo \(m.\) Sau đó thay từng giá trị m vào ta tìm được nghiệm cụ thể.

Cách 2: Thay từng giá trị \(m\) vào hệ phương trình rồi dùng phương pháp thế hoặc cộng đại số để giải hệ phương trình thu được.

Lời giải chi tiết:

(I) \(\left\{ \matrix{2{\rm{x}} - y = m(1) \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 (2) \hfill \cr} \right.\)

Ta có (1) ⇔ \(y = 2x – m\) (3)

Thế (3) vào (2), ta có:

\(4{\rm{x}} - {m^2}\left( {2{\rm{x}} - m} \right) = 2\sqrt 2\)

\( \Leftrightarrow 2\left( {2 - {m^2}} \right)x = 2\sqrt 2  - {m^3}(*)\) 

Với \(m = 1\). Thế vào phương trình (*), ta được:

\(2.(2-1)x = 2\sqrt 2  - 1 \Leftrightarrow 2{\rm{x}} = 2\sqrt 2  - 1\)

\(\Leftrightarrow x = \displaystyle {{2\sqrt 2  - 1} \over 2}\) 

Thay \(x\) vừa tìm được vào (3), ta có: \(y = 2\sqrt{2} – 2\)

Vậy hệ phương trình có một nghiệm duy nhất là: \(\left( \displaystyle {{{2\sqrt 2  - 1} \over 2};2\sqrt 2  - 2} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved