Bài 4 trang 18 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hình bát diện đều \(ABCDEF\) 

Chứng minh rằng :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

a) Các đoạn thẳng \(AF, BD\) và \(CE\) đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.

Phương pháp giải:

+) Sử dụng tính chất của mặt phẳng trung trực.

+) Dấu hiệu nhân biết hình vuông: Hình thoi có hai đường chéo bằng nhau là hình vuông.

Lời giải chi tiết:

a) Do \(B, C, D, E\) cách đều \(A\) và \(F\) nên chúng đồng phẳng (cùng thuộc mặt phẳng trung trực của \(AF\)).

Tương tự, \(A, B, F, D\) đồng phẳng và \(A, C, F, E\) đồng phẳng.

Gọi \(I\) là giao của \((AF)\) với \((BCDE)\). Khi đó \(B, I, D\) là những điểm chung của hai mặt phẳng \((BCDE)\) và \((ABFD)\) nên chúng thẳng hàng. Tương tự, \(E, I , C\) thẳng hàng.

Vậy \(AF, BD, CE\) đồng quy tại \(I\).

Vì \(BCDE\) là hình thoi nên \(EC\) vuông góc với \(BC\) và cắt \(BC\) tại \(I\) là trung điểm của mỗi đường. \(I\) là trung điểm của \(AF\) và \(AF\) vuông góc với \(BD\) và \(EC\), do đó các đoạn thẳng \(AF, BD\), và \(CE\) đôi một vuông góc với nhau cắt nhau tại trung điểm của chúng.

Cách khác:

Giả sử bát diện đều \(ABCDEF\) có cạnh bằng \(a.\)

\(B, C, D, E\) cách đều \(A\) và \(F\) suy ra \(B, C, D, E\) cùng nằm trên mặt phẳng trung trực của đoạn thẳng \(AF\)

Trong mp \((BCDE)\), ta có \(BC = CD = DE = EB (= a)\)

\(⇒ BCDE\) là hình thoi

\(⇒ BD ⊥ EC\) và \(BD, EC\) cắt nhau tại trung điểm mỗi đường.

Chứng minh tương tự ta suy ra \(AF\) và \(BD, AF\) và \(CE\) vuông góc nhau và cắt nhau tại trung điểm mỗi đường.

LG b

b) \(ABFD, AEFC\) và \(BCDE\) là những hình vuông.

Phương pháp giải:

+) Sử dụng tính chất của mặt phẳng trung trực.

+) Dấu hiệu nhân biết hình vuông: Hình thoi có hai đường chéo bằng nhau là hình vuông.

Lời giải chi tiết:

b) Ta có tứ giác \(DCBE\) là hình thoi.

Do \(AI\) vuông góc \((BCDE)\) và \(AB = AC =AD = AE\) nên \(IB = IC= ID = IE\).

Từ đó suy ra hình thoi \(BCDE\) là hình vuông. Tương tự \(ABFD, AEFC\) là những hình vuông.

Cách khác:

Gọi trung điểm \(BD, CE, AF là O\).

\(\begin{array}{l}BO \bot AO \Rightarrow AB = \sqrt {A{O^2} + B{O^2}} \\AO \bot OE \Rightarrow AE = \sqrt {A{O^2} + O{E^2}} \end{array}\)

Mà \(AB = AE (= a) ⇒ BO = OE ⇒ BD = EC\)

⇒ Hình thoi \(BCDE\) là hình vuông.

Chứng minh tương tự: \(ABFD, AEFC\) đều là hình vuông.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved