Bài 4 trang 168 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho tam giác ABC cân tại A. Tia phân giác của góc B cắt tại F, tia phân giác của góc C cắt AB tại E.

a) Chứng minh rằng \(\widehat {ABF} = \widehat {ACE}.\)

b) Chứng minh rằng tam giác AEF cân.

c) Gọi I là giao điểm của BF và CE. Chứng minh rằng tam giác IBC và IEF  là những tam giác cân.

Lời giải chi tiết

 

a) Ta có: \(\widehat {FBC} = \widehat {ABF} = {{\widehat {ABC}} \over 2}\)   (BF là tia phân giác của góc ABC)

\(\widehat {ECB} = \widehat {ACE} = {{\widehat {ACB}} \over 2}\)   (CE là tia phân giác của góc ACB)

\(\widehat {ABC} = \widehat {ACE}(\Delta ABC\)  cân tại A)

Do đó: \(\widehat {ABF} = \widehat {FBC} = \widehat {ECB} = \widehat {ACE} \Rightarrow \widehat {ABF} = \widehat {ACE}\)

b) Xét tam giác AEC và AFB có:

\(\widehat {EAC} = \widehat {FAB}\)   (góc chung)

AC = AB (tam giác ABC cân tại A)

\(\widehat {ACE} = \widehat {ABF}\)   (chứng minh câu a)

Do đó: \(\Delta AEC = \Delta AFB(g.c.g) \Rightarrow AE = AF.\)   Vậy \(\Delta AEF\)  cân tại A.

c) Ta có: \(\widehat {IBC} = \widehat {ICB}\)   (chứng minh câu a). Vậy tam giác IBC cân tại I.

Ta có: \(\widehat {AEF} + \widehat {IEF} = \widehat {AEI};\widehat {AFE} + \widehat {IFE} = \widehat {AFI}\)

Mà \(\widehat {AEF} = \widehat {AFE};\widehat {AEI} = \widehat {AFI} \Rightarrow \widehat {IEF} = \widehat {IFE}\)

Do đó tam giác IEF cân tại I.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved