Bài 4 trang 120 Tài liệu dạy – học Toán 9 tập 1

Đề bài

Cho hình thang cân ABCD ( AB // CD). Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Xác định tâm O của đường tròn này.

Phương pháp giải - Xem chi tiết

Gọi \(O\) là giao điểm của trục của hình thang cân \(ABCD\) và đường trung trực của cạnh bên \(AD\). Sử dụng tính chất: Điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó chứng minh \(OA = OB = OC = OD\).

Lời giải chi tiết

 

 

Gọi \(d\) là trục của hình thang cân \(ABCD\), \(d'\) là đường trung trực của cạnh bên \(AD\).

Gọi \(O = d \cap d'\) ta có:

\(d\) là trục của hình thang cân \(ABCD \Rightarrow d\) là đường trung trực của AB và CD.

Mà \(O \in d \Rightarrow \left\{ \begin{array}{l}OA = OB\\OC = OD\end{array} \right.\,\,\left( 1 \right)\) (điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).

Lại có \(O \in d' \Rightarrow OA = OD\,\,\left( 2 \right)\) (điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).

Từ (1) và (2) \( \Rightarrow OA = OB = OC = OD\).

Vậy bốn điểm \(A,\,\,B,\,\,C,\,\,D\) cùng thuộc đường tròn tâm \(O\), bán kính \(R = OA = OB = OC = OD\).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved