Bài 39 trang 124 Sách bài tập Hình học lớp 12 Nâng cao

Đề bài

Viết phương trình mặt phẳng đi qua điểm M0(1;2;4), cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho \(OA = OB = OC \ne 0.\)

Lời giải chi tiết

Mặt phẳng cần tìm đi qua điểm M0(1;2;4) có phương trình:

 \(a(x-1)+b(y-2)+c(z-4)=0\)            (1)

hay \(ax+by+cz=a+2b+4c\) với \(a + 2b + 4c \ne 0\) (theo giả thiết)

Từ đó, ta xác định được tọa độ các giao điểm A, B, C là:

\(\eqalign{  & A = \left( {{{a + 2b + 4c} \over a};0;0} \right)\cr&B = \left( {0;{{a + 2b + 4c} \over b};0} \right)  \cr  & C = \left( {0;0;{{a + 2b + 4c} \over c}} \right) \cr} \)

Vì OA = OB = OC nên \(O{A^2} = O{B^2} = O{C^2},\) do đó ta có

\({{{{\left( {a + 2b + 4c} \right)}^2}} \over {{a^2}}} = {{{{\left( {a + 2b + 4c} \right)}^2}} \over {{b^2}}} = {{{{\left( {a + 2b + 4c} \right)}^2}} \over {{c^2}}}\)

Hay \({a^2} = {b^2} = {c^2}\). Có những trường hợp sau xảy ra:

+) Nếu a, b, c cùng dấu thì \(a=b=c\) và phương trình (1) trở thành

\(x+y+z-7=0\).

+) Nếu a, b cùng dấu và khác dấu với c thì \(a=b=-c\). Phương trình (1) trở thành

\(x+y-z+1=0\).

+) Nếu a, c cùng dấu và khác dấu với c thì \(a=c=-b\). Phương trình (1) trở thành

\(x-y+z-3=0\).

+) Nếu b, c cùng dấu và khác dấu với a thì \(–a=b=c\). Phương trình (1) trở thành :

\(-x+y+z-5=0\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved