Bài 38 trang 62 SBT Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, \(\widehat B\) = 600. Biết rằng có một hình nón nội tiếp hình chóp đã cho với bán kính đáy là r, góc giữa đường sinh và đáy hình nón là \(\beta .\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

LG 1

Tính diện tích xung quanh và thể tích hình nón.

Lời giải chi tiết:

Đáy hình nón trong bài toán là đường tròn nội tiếp tam giác ABC.

Đường cao hình nón là SO (S là đỉnh của hình chóp ).

Gọi I là điểm tiếp xúc của BC với đường tròn nội tiếp \(\Delta ABC\) thì \(OI \bot BC\) và \(SI \bot BC\) nên \(\widehat {SIO}\) =\(\beta .\)

Khi đó, chiều cao hình nón là

\(h = SO = OI\tan \beta  = r\tan \beta ,\)

Độ dài đường sinh hình nón là

\(l = SI = {{OI} \over {\cos \beta }} = {r \over {\cos \beta }}.\)

Vậy diện tích xung quanh của hình nón là

\({S_1} = \pi rl = \pi r.{r \over {\cos \beta }} = {{\pi {r^2}} \over {\cos \beta }}.\)

Thể tích hình nón là

\({V_1} = {1 \over 3}\pi {r^2}h = {1 \over 3}\pi {r^2}.r.\tan \beta  = {1 \over 3}\pi {r^3}\tan \beta .\)

LG 2

Tính diện tích xung quanh và thể tích hình chóp.

Lời giải chi tiết:

Dễ thấy ba đường cao của ba mặt bên hình chóp S.ABC bằng nhau và cùng bằng SI.

Diện tích xung quanh của hình chóp là

\({S_2} = {1 \over 2}\left( {AB + AC + BC} \right).SI\)

Mặt khác \(AC = AB\sqrt 3 ,BC = 2AB,\)

\(\eqalign{  & {S_{\Delta ABC}} = {1 \over 2}AB.AC = {1 \over 2}A{B^2}\sqrt 3 ,  \cr & {S_{\Delta ABC}}= {1 \over 2}\left( {AB + AC + BC} \right).r \cr&\;\;\;\;\;\;\;\;\;\;\;\,= {1 \over 2}\left( {3 + \sqrt 3 } \right).AB.r. \cr} \)

Từ đó \(AB = \left( {\sqrt 3  + 1} \right)r.\)

Vậy diện tích xung quanh của hình chóp S.ABC là

\(\eqalign{  & {S_2} = {1 \over 2}\left( {3 + \sqrt 3 } \right)AB.SI \cr&\;\;\;\;\;= {1 \over 2}\left( {3 + \sqrt 3 } \right)\left( {\sqrt 3  + 1} \right)r.{r \over {\cos \beta }}  \cr  &  \;\;\;\;\;= {{\sqrt 3 } \over 2}{\left( {\sqrt 3  + 1} \right)^2}{{{r^2}} \over {\cos \beta }}. \cr} \)

Thể tích hình chóp S.ABC là

\({V_2} = {1 \over 3}.{1 \over 2}AB.AC.SO = {{\sqrt 3 } \over 6}A{B^2}.SO,\) từ đó

\(\eqalign{  {V_2} &= {{\sqrt 3 } \over 6}{\left( {\sqrt 3  + 1} \right)^2}{r^2}.r\tan \beta   \cr  &  = {{\sqrt 3 } \over 6}{\left( {\sqrt 3  + 1} \right)^2}{r^3}\tan \beta . \cr} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved