Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Giải các phương trình:
LG a
LG a
\({\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} + {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x\)
Phương pháp giải:
Thực hiện phá ngoặc và chuyển vế để biến đổi đưa phương trình về dạng phương trình bậc hai một ẩn. Sử dụng công thức nghiệm để giải phương trình bậc hai thu được.
Lời giải chi tiết:
\({\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} + {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x\)
\( \Leftrightarrow {\rm{ }}{x^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}9{\rm{ }} + {\rm{ }}{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}16{\rm{ }} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x\)
\( \Leftrightarrow {\rm{ }}2{x^2} + {\rm{ }}5x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\)
\(\Delta = 25{\rm{ - }}16 = 9>0\)
Khi đó phương trình có 2 nghiệm phân biệt là: \({x_1} = \dfrac{{ - 5 - 3}}{{2.2}} = - 2;{x_2} = \dfrac{{ - 5 + 3}}{{2.2}} = - \dfrac{1}{2}\)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
LG b
LG b
\({x^3} + {\rm{ }}2{x^2}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}1} \right)({x^2}-{\rm{ }}2)\)
Phương pháp giải:
Thực hiện phá ngoặc và chuyển vế để biến đổi đưa phương trình về dạng phương trình bậc hai một ẩn. Sử dụng công thức nghiệm để giải phương trình bậc hai thu được.
Lời giải chi tiết:
\({x^3} + {\rm{ }}2{x^2}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}1} \right)({x^2}-{\rm{ }}2)\)
\(\Leftrightarrow {\rm{ }}{x^3} + {\rm{ }}2{x^2}-{\rm{ }}{x^2} + {\rm{ }}6x{\rm{ }}-{\rm{ }}9{\rm{ }} = {\rm{ }}{x^3}-{\rm{ }}{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}2\)
\({\rm{ }} \Leftrightarrow {\rm{ }}2{x^2} + {\rm{ }}8x{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\)
\(\displaystyle \Delta' = 16 + 22 = 38,{x_1} = {\rm{ }}{{ - 4 + \sqrt {38} } \over 2},{x_2} = {{ - 4 - \sqrt {38} } \over 2}\)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
LG c
LG c
\({\left( {x{\rm{ }}-{\rm{ }}1} \right)^3} + {\rm{ }}0,5{x^2} = {\rm{ }}x({x^2} + {\rm{ }}1,5)\)
Phương pháp giải:
Thực hiện phá ngoặc và chuyển vế để biến đổi đưa phương trình về dạng phương trình bậc hai một ẩn. Sử dụng công thức nghiệm để giải phương trình bậc hai thu được.
Lời giải chi tiết:
\({\left( {x{\rm{ }}-{\rm{ }}1} \right)^3} + {\rm{ }}0,5{x^2} = {\rm{ }}x({x^2} + {\rm{ }}1,5)\)
\( \Leftrightarrow {\rm{ }}{x^3}-{\rm{ }}3{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}1{\rm{ }} + {\rm{ }}0,5{x^2} = {\rm{ }}{x^3} + {\rm{ }}1,5x\)
\(\Leftrightarrow {\rm{ }}2,5{x^2}-{\rm{ }}1,5x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow {\rm{ }}5{x^2}-{\rm{ }}3x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\);
\({\rm{ }}\Delta {\rm{ }} = {\rm{ }}9{\rm{ }}-{\rm{ }}40{\rm{ }} = {\rm{ }} - 31{\rm{ }} < {\rm{ }}0\)
Phương trình vô nghiệm
LG d
LG d
\(\dfrac{x(x - 7)}{3} – 1\) = \(\dfrac{x}{2}\) - \(\dfrac{x-4}{3}\)
Phương pháp giải:
Bước 1: Tìm điều kiện xác định
Bước 2: Qui đồng và khử mẫu
Bước 3: Biến đổi đưa về phương trình bậc hai, giải phương trình này bằng cách sử dụng công thức nghiệm
Bước 4: So sánh điều kiện rồi kết luận nghiệm.
Lời giải chi tiết:
\(\dfrac{x(x - 7)}{3}– 1=\dfrac{x}{2}-\dfrac{x-4}{3}\)
\( \Leftrightarrow {\rm{ }}2x\left( {x{\rm{ }}-{\rm{ }}7} \right){\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}3x{\rm{ }}-{\rm{ }}2\left( {x{\rm{ }}-{\rm{ }}4} \right)\)
\(\Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}14x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}3x{\rm{ }}-{\rm{ }}2x{\rm{ }} + {\rm{ }}8\)
\(\Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}15x{\rm{ }}-{\rm{ }}14{\rm{ }} = {\rm{ }}0;\)
\(\Delta {\rm{ }} = {\rm{ }}225{\rm{ }} + {\rm{ }}112{\rm{ }} = {\rm{ }}337>0\)
\(\displaystyle {x_1} = {{15 + \sqrt {337} } \over 4},{x_2} = {\rm{ }}{{15 - \sqrt {337} } \over 4}\)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
LG e
LG e
\(\dfrac{14}{x^{2}-9}\) = \(1 - \dfrac{1}{3-x}\)
Phương pháp giải:
Bước 1: Tìm điều kiện xác định
Bước 2: Qui đồng và khử mẫu
Bước 3: Biến đổi đưa về phương trình bậc hai, giải phương trình này bằng cách sử dụng công thức nghiệm
Bước 4: So sánh điều kiện rồi kết luận nghiệm.
Lời giải chi tiết:
\(\dfrac{14}{x^{2}-9}=1-\dfrac{1}{3-x}\). Điều kiện: \(x{\rm{ }} \ne {\rm{ }} \pm 3\)
Khi đó
\(\begin{array}{l}\dfrac{{14}}{{{x^2} - 9}} = 1 - \dfrac{1}{{3 - x}}\\ \Leftrightarrow \dfrac{{14}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \dfrac{{{x^2} - 9}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \dfrac{{x + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\end{array}\)
\(\begin{array}{l} \Rightarrow 14 = {x^2} - 9 + x + 3\\ \Leftrightarrow {x^2} + x - 20 = 0\end{array}\)
\({\rm{ }}\Delta {\rm{ }} = {\rm{ }}1{\rm{ }} + {\rm{ }}4{\rm{ }}.{\rm{ }}20{\rm{ }} = {\rm{ }}81>0\)
Nên \(\displaystyle {x_1} = {{ - 1 - 9} \over 2} = - 5;{x_2} = {{ - 1 + 9} \over 2} = 4\) (thỏa mãn)
Vậy phương trình có hai nghiệm \({x_1} = {\rm{ }} - 5,{\rm{ }}{x_2} = {\rm{ }}4\).
LG f
LG f
\(\dfrac{2x}{x+1}\) = \(\dfrac{x^{2}-x+8}{(x+1)(x-4)}\)
Phương pháp giải:
Bước 1: Tìm điều kiện xác định
Bước 2: Qui đồng và khử mẫu
Bước 3: Biến đổi đưa về phương trình bậc hai, giải phương trình này bằng cách sử dụng công thức nghiệm
Bước 4: So sánh điều kiện rồi kết luận nghiệm.
Lời giải chi tiết:
\(\dfrac{2x}{x+1}\) = \(\dfrac{x^{2}-x+8}{(x+1)(x-4)}\). Điều kiện: \(x ≠ -1, x ≠ 4\)
Qui đồng và khử mẫu ta được:
\(2x\left( {x{\rm{ }}-{\rm{ }}4} \right){\rm{ }} = {\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}8\)
\( \Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}8x{\rm{ }}-{\rm{ }}{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}0\)
\(\Leftrightarrow {\rm{ }}{x^2}-{\rm{ }}7x{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}0\)
Có \(a – b + c = 1 – (-7) – 8 = 0\) nên \({x_1} = - 1,{x_2} = 8\)
Vì \({x_1} = - 1\) không thỏa mãn điều kiện của ẩn nên: phương trình có một nghiệm là \(x = 8\).
Tải 20 đề kiểm tra 1 tiết học kì 2 Văn 9
PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1
Đề thi vào 10 môn Toán Trà Vinh
CHƯƠNG I. SINH VẬT VÀ MÔI TRƯỜNG
ĐỊA LÍ ĐỊA PHƯƠNG