PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 37 trang 56 sgk Toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

 Giải phương trình trùng phương: 

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

LG a

\(9{x^4} - 10{x^2} + 1 = 0\)

Phương pháp giải:

Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\)

Lời giải chi tiết:

\(9{x^4} - 10{x^2} + 1 = 0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \(9{t^2}-{\rm{ }}10t{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\). 

Vì \(a + b + c = 9 – 10 + 1 = 0\) nên \(\displaystyle {t_1} = 1,{t_2} = {1 \over 9}\) (thỏa mãn) 

+ Với t = 1\(⇒ x^2 = 1 ⇒ x = 1\) hoặc \(x = -1.\)  

+ Với \(t = \dfrac{1}{9} \Rightarrow {x^2} = \dfrac{1}{9} \Leftrightarrow x =  \pm \dfrac{1}{3}\)

Vậy các nghiệm của phương trình đã cho là: \(\displaystyle {x_1} =  - 1,{x_2} = 1,{x_3} =  - {1 \over 3},{x_4} = {\rm{ }}{1 \over 3}\) 

LG b

LG b

\(5{x^4} + 2{x^2}{\rm{  - }}16 = 10{\rm{  - }}{x^2}\)

Phương pháp giải:

Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\)

Lời giải chi tiết:

\(5{x^4} + 2{x^2}{\rm{  - }}16 = 10{\rm{  - }}{x^2}\)

\( \Leftrightarrow {\rm{ }}5{x^4} + {\rm{ }}3{x^2}-{\rm{ }}26{\rm{ }} = {\rm{ }}0\).

Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \(5{t^2} + {\rm{ }}3t{\rm{ }} - 26{\rm{ }} = {\rm{ }}0\) 

\(\Delta {\rm{ }} = {\rm{ }}9{\rm{ }} + {\rm{ }}4{\rm{ }}.{\rm{ }}5{\rm{ }}.{\rm{ }}26{\rm{ }} = {\rm{ }}529{\rm{ }} = {\rm{ }}{23^2}\);

\({\rm{ }}{t_1} = {\rm{ }}2,{\rm{ }}{t_2} = {\rm{ }} - 2,6\) (loại).

Do đó: \(x^2=2\) suy ra \({x_1} = {\rm{ }}\sqrt 2 ,{\rm{ }}{x_2} = {\rm{ }} - \sqrt 2 \) 

LG c

LG c

\(0,3{x^4} + 1,8{x^2} + 1,5 = 0\)

Phương pháp giải:

Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\)

Lời giải chi tiết:

\(0,3{x^4} + 1,8{x^2} + 1,5 = 0\)  

\( \Leftrightarrow {\rm{ }}{x^4} + {\rm{ }}6{x^2} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)

 Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có:

\({t^2} + {\rm{ }}6t{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)

Phương trình này có \(a-b+c=1-6+5=0\) nên có hai nghiệm:

\({\rm{ }}{t_1} = {\rm{ }} - 1\) (loại), \({\rm{ }}{t_2} = {\rm{ }} - 5\) (loại).

Vậy phương trình đã cho vô nghiệm.   

Chú ý:  Cũng có thể nhận xét rằng vế trái \({x^4} + {\rm{ }}6{x^2} + {\rm{ }}5{\rm{ }} \ge {\rm{ }}5\), còn vế phải bằng 0. Vậy phương trình vô nghiệm.

LG d

LG d

\(\displaystyle 2{x^2} + 1 = {\rm{ }}{1 \over {{x^2}}} - 4\)

Phương pháp giải:

Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\)

Lời giải chi tiết:

\(\displaystyle 2{x^2} + 1 = {\rm{ }}{1 \over {{x^2}}} - 4\) \( \displaystyle \Leftrightarrow 2{x^2} + 5 - {\rm{ }}{1 \over {{x^2}}} = 0\).

Điều kiện \(x ≠ 0\)

\(2{x^4} + {\rm{ }}5{x^2}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có:

\(2{t^2} + 5t{\rm{  - }}1 = 0;\Delta  = 25 + 8 = 33\), 

\(\displaystyle {t_1} = {\rm{ }}{{ - 5 + \sqrt {33} } \over 4}(tm),{t_2} = {\rm{ }}{{ - 5 - \sqrt {33} } \over 4}\) (loại)

Do đó \(\displaystyle  x^2= {\rm{ }}{{ - 5 + \sqrt {33} } \over 4}\) suy ra \(\displaystyle {x_1} = {\rm{ }}{{\sqrt { - 5 + \sqrt {33} } } \over 2},{x_2} = {\rm{ }} - {{\sqrt { - 5 + \sqrt {33} } } \over 2}\) 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved