Bài 36 trang 61 SBT Hình học 12 Nâng cao

Đề bài

Tìm hình nón có thể tích lớn nhất khi diện tích toàn phần của nó bằng diện tích hình tròn bán kính a cho trước.

Lời giải chi tiết

Kí hiệu bán kính đáy và chiều cao hình nón lần lượt là x và y (x, y > 0). Khi đó, diện tích toàn phần của hình nón là

\(\pi x\sqrt {{x^2} + {y^2}}  + \pi {x^2},\)

Theo gia thiết ta có

\(\eqalign{  & \pi x\sqrt {{x^2} + {y^2}}  + \pi {x^2} = \pi {a^2}  \cr  &  \Leftrightarrow x\sqrt {{x^2} + {y^2}}  + {x^2} = {a^2}  \cr  &  \cr} \)

\( \Leftrightarrow x\sqrt {{x^2} + {y^2}}  = {a^2} - {x^2}\) (điều kiện x < a)

\(\eqalign{  &  \Leftrightarrow {x^2}({x^2} + {y^2}) = {a^4} + {x^4} - 2{a^2}{x^2}  \cr  &  \Leftrightarrow {x^2}{y^2} = {a^4} - 2{a^2}{x^2} \Leftrightarrow {x^2} = {{{a^4}} \over {{y^2} + 2{a^2}}} \cr} \)

Khi đó thể tích khối nón là

\(V = {1 \over 3}\pi {{{a^4}} \over {{y^2} + 2{a^2}}}.y = {{\pi {a^4}} \over 3}.{y \over {{y^2} + 2{a^2}}}.\)

Từ đó V đạt giá trị lớn nhất khi và chỉ khi \({{{y^2} + 2{a^2}} \over y}\) đạt giá trị nhỏ nhất.

Ta có \({{{y^2} + 2{a^2}} \over y} = y + {{2{a^2}} \over y} \ge 2\sqrt {y.{{2{a^2}} \over y}}  = 2\sqrt 2 a.\)

Vậy V đạt giá trị lớn nhất khi và chỉ khi \(y = {{2{a^2}} \over y},\) tức là \(y = a\sqrt 2 \), lúc đó \(x = {a \over 2}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved