Bài 35 trang 123 Sách bài tập hình học lớp 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho điểm \({M_0}({x_0},{y_0},{z_0})\) với \({x_0},{y_0},{z_0} \ne 0.\) Trong mỗi trường hợp sau, viết phương trình mặt phẳng :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Đi qua diểm M0 và song song với một trong các mặt phẳng tọa độ (Oxy), (Oyz), (Oxz).

Lời giải chi tiết:

Mặt phẳng qua \({M_0}({x_0},{y_0},{z_0})\) và song song với mặt phẳng mp(Oxy) có vec tơ pháp tuyến là \(\overrightarrow k  = (0;0;1)\) nên có phương trình là \(z - {z_0} = 0.\)

Phương trình mặt phẳng qua \({M_0}({x_0},{y_0},{z_0})\) và song song với mp(Oxz) là :

\(y - {y_0} = 0\).

Phương trình mặt phẳng qua \({M_0}({x_0},{y_0},{z_0})\) và song song với mp(Oyz) là :

\(x - {x_0} = 0\)

LG b

Đi qua các hình chiếu của điểm M0 trên các trục tọa độ Ox, Oy, Oz.

Lời giải chi tiết:

Gọi \({M_1},{M_2},{M_3}.\) lần lượt là hình chiếu của điểm M0 trên các trục Ox, Oy, Oz. Khi đó : \({M_1} = ({x_0};0;0),{M_2} = (0;{y_0};0),{M_3} = (0;0;{z_0})\)

Vậy phương trình mặt phẳng \(({M_1}{M_1}{M_3})\) là :

\({x \over {{x_0}}} + {y \over {{y_0}}} + {z \over {{z_0}}} = 1.\)

LG c

Đi qua điểm M0 và lần lượt chứa các trục tọa độ Ox, Oy, Oz.

Lời giải chi tiết:

Gọi \(({P_x})\) là mặt phẳng chứ điêm M0 và trục Ox. Khi đó vec tơ pháp tuyến của nó là :

\(\overrightarrow {{n_x}}  = \left[ {\overrightarrow {O{M_0}} ,\overrightarrow i } \right] = \left( {\left| \matrix{  {y_0} \hfill \cr  0 \hfill \cr}  \right.\left. \matrix{  {z_0} \hfill \cr  0 \hfill \cr}  \right|;\left| \matrix{  {z_0} \hfill \cr  0 \hfill \cr}  \right.\left. \matrix{  {x_0} \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  {x_0} \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  {y_0} \hfill \cr  0 \hfill \cr}  \right|} \right) \)

       \(= (0;{z_0}; - {y_0})\)

Vậy \(({P_x})\) có phương trình là \({z_0}y - {y_0}z = 0.\)

Tương tự , phương trình mặt phẳng chứa điểm M0 và trục Oy là:

\({z_0}x - {x_0}z = 0.\)

Phương trình mặt phẳng chứa điểm M0 và trục Oz là: 

\({y_0}x - {x_0}y = 0.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved