PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 33 trang 80 sgk Toán lớp 9 tập 2

Đề bài

Cho \(A, B, C\) là ba điểm trên một đường tròn. \(At\) là tiếp  tuyến của đường tròn tại \(A\). Đường thẳng song song với \(At\) cắt \(AB\) tại \(M\) và cắt \(AC\) tại \(N\).

Chứng minh: \(AB. AM = AC . AN\)

Phương pháp giải - Xem chi tiết

+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.

+) Chứng minh cặp tam giác đồng dạng tương ứng. Từ đó suy ra các cặp tương ứng tỉ lệ và đẳng thức cần chứng minh.

Lời giải chi tiết

 

                    

Xét đường tròn \((O)\) ta có: 

\(\widehat C\) là góc nội tiếp chắn cung \(AB\)

\(\widehat{BAt}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung \(AB.\)

\(\Rightarrow \widehat {BAt} = \widehat C.\)             (1)

Lại có vì \(MN//At\) nên  \(\widehat{AMN} = \widehat {BAt}\) (so le trong)    (2)

Từ (1) và (2) suy ra: \(\widehat{AMN} = \widehat C\)              (3)

Xét hai tam giác \(AMN\) và \(ACB\) ta có:

             \(\widehat A\) chung

             \(\widehat M = \widehat C \, \, (theo (3))\)

Vậy \(∆AMN ∽ ∆ACB \, (g-g)\)

\(\displaystyle \Rightarrow {{AN} \over {AB}} = {{AM} \over {AC}}\) (các cặp cạnh tương ứng tỉ lệ)

\(\Rightarrow AB. AM = AC . AN\) (đpcm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved