Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Hai người thợ cùng làm một công việc trong \(16\) giờ thì xong. Nếu người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu ?
Phương pháp giải - Xem chi tiết
B1: Chọn ẩn, đặt điều kiện thích hợp.
Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
Lập hệ phương trình biểu thị sự tương quan giữa các đại lượng.
B2: Giải hệ phương trình.
B3: Kiểm tra trong các nghiệm tìm được nghiệm nào thỏa mãn điều kiện, nghiệm nào không thỏa mãn, rồi trả lời
Chú ý: +) Quy ước làm xong công việc là \(1\).
+) Một người làm xong trong \(x\) giờ thì trong \(1\) giờ làm được \(\dfrac{1}{x}\) công việc.
Lời giải chi tiết
Gọi thời gian người thứ nhất hoàn thành công việc một mình là: \(x\) giờ, người thứ hai hoàn thành công việc một mình là \(y\) giờ. Điều kiện \(x > 16, y > 16\).
Trong \(1\) giờ người thứ nhất làm được \(\dfrac{1}{x}\) công việc, người thứ hai làm được \(\dfrac{1}{y}\) công việc.
Do đó cả hai người cùng làm chung thì trong 1 giờ làm được: \(\dfrac{1}{x}+\dfrac{1}{y}\) công việc.
Theo đề bài, hai người làm chung trong \(16\) giờ thì xong nên trong \(1\) giờ hai người làm được: \(\dfrac{1}{16}\) công việc.
Nên ta có phương trình: \(\dfrac{1}{x} + \dfrac{1}{y}= \dfrac{1}{16}\) (1).
Trong \(3\) giờ, người thứ nhất làm được: \(3. \dfrac{1}{x}\) công việc.
Trong \(6\) giờ người thứ hai làm được: \(6. \dfrac{1}{y}\) công việc.
Theo đề bài, nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì cả hai người làm được \(25\) %\(=\dfrac{25}{100}=\dfrac{1}{4}\) công việc.
Nên ta có phương trình: \(3. \dfrac{1}{x} + 6.\dfrac{1}{y} = \dfrac{1}{4}\) (2)
Ta có hệ phương trình:
\(\left\{\begin{matrix} \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{16} & & \\ 3.\dfrac{1}{x} + 6. \dfrac{1}{y} = \dfrac{1}{4}& & \end{matrix}\right.\).
Đặt \(\left\{\begin{matrix} \dfrac{1}{x}=a & & \\ \dfrac{1}{y}=b & & \end{matrix}\right.\) với \(a > 0,\ b> 0.\)
Hệ đã cho trở thành:
\(\left\{\begin{matrix} a + b = \dfrac{1}{16} & & \\ 3a+ 6b=\dfrac{1}{4} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} a =\dfrac{1}{16} -b & & \\ 3a+ 6b=\dfrac{1}{4} & & \end{matrix}\right.\)
\(\left\{\begin{matrix} a = \dfrac{1}{16}-b & & \\ 3{\left(\dfrac{1}{16} -b \right)}+6b=\dfrac{1}{4} & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} a = \dfrac{1}{16}-b & & \\ 3.\dfrac{1}{16} -3b+6b=\dfrac{1}{4} & & \end{matrix}\right.\)
\(\left\{\begin{matrix} a = \dfrac{1}{16}-b & & \\ 3b= \dfrac{1}{4} -\dfrac{3}{16}& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} a = \dfrac{1}{16}-b & & \\ 3b=\dfrac{1}{16} & & \end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix} a = \dfrac{1}{16}- \dfrac{1}{48} & & \\ b=\dfrac{1}{48} & & \end{matrix} \right. \)
\(\Leftrightarrow \left\{\begin{matrix} a = \dfrac{1}{24} & & \\ b=\dfrac{1}{48} & & \end{matrix} (thỏa\ mãn) \right.\)
Do đó \(\left\{\begin{matrix} \dfrac{1}{x}=\dfrac{1}{24} & & \\ \dfrac{1}{y}=\dfrac{1}{48} & & \end{matrix}\right.\) \( \Leftrightarrow \left\{\begin{matrix} x =24 & & \\ y=48 & & \end{matrix} (thỏa\ mãn)\right.\)
Vậy người thứ nhất làm một mình xong công việc trong \(24\) giờ, người thứ hai làm một mình xong công việc trong \(48\) giờ.
Đề kiểm tra 45 phút (1 tiết) - Chương 5 - Hóa học 9
Bài 15: Vi phạm pháp luật và trách nhiệm pháp lý của công dân
Đề thi vào 10 môn Toán Sóc Trăng
Đề thi vào 10 môn Anh Lâm Đồng
Bài 9: Làm việc có năng suất, chất lượng, hiệu quả