Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho đường tròn tâm \(O\) đường kính \(AB\). Một tiếp tuyến của đường tròn tại \(P\) cắt đường thẳng \(AB\) tại \(T\) (điểm \(B\) nằm giữa \(O\) và \(T\))
Chứng minh: \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\).
Phương pháp giải - Xem chi tiết
+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.
+) Tổng hai góc nhọn trong tam giác vuông bằng \(90^0\)
Lời giải chi tiết
Cách 1:
Ta có \(\widehat {TPB}\) là góc tạo bởi tiếp tuyến \(PT\) và dây cung \(PB\) của đường tròn \((O)\) nên \(\widehat {TPB}=\dfrac{1}{2}sđ\overparen{BP}\) (1)
Lại có: \(\widehat {BOP}=sđ\overparen{BP}\) (góc ở tâm chắn \(\overparen{BP}\)) (2)
Từ (1) và (2) suy ra \(\widehat {BOP} = 2.\widehat {TPB}\).
Vì \(TP\) là tiếp tuyến của đường tròn \((O)\) nên \( OP \bot TP\). Do đó tam giác \(TPO\) vuông tại \(P\), ta có \(\widehat {BOP} + \widehat {BTP}=90^0.\)
hay \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\) (đpcm)
Cách 2:
Vì \(\widehat {BAP} = \widehat{BPT}\) ( góc nội tiếp chắn cung và góc tạo bởi tiếp tuyến và dây cung \(PB\))
Vì \(\widehat {B_{1}}\) là góc ngoài tại đỉnh B của tam giác BPT nên
\(\widehat {B_{1}} =\widehat {BTP} +\widehat {BPT}\)
\(\Rightarrow \widehat {BAP}+\widehat {B_{1}} =\widehat {BPT}+ \widehat {BTP} +\widehat {BPT}=\widehat {BTP} + 2.\widehat {TPB}\)(3)
Xét đường tròn (O) có: \(\widehat{APB}= 90^0\)( góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\) Tam giác APB vuông tại P
\(\Rightarrow\) \(\widehat {BAP}+\widehat {B_{1}} =90^0\) (4)
Từ (3) và (4) ta có:\(\Rightarrow\) \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\) (đpcm)
Tải 20 đề kiểm tra 1 tiết học kì 2 Văn 9
Bài 32
Bài 18: Sống có đạo đức và tuân theo pháp luật
Unit 5: Wonders of Viet Nam
Đề thi vào 10 môn Toán Quảng Bình