PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 31 trang 23 sgk Toán 9 tập 2

Đề bài

Tính độ dài hai cạnh góc vuông của một tam giác vuông, biết rằng nếu tăng mỗi cạnh lên \(3\) cm thì diện tích tam giác đó sẽ tăng thêm \(36\) cm2, và nếu một cạnh giảm đi \(2\)cm, cạnh kia giảm đi \(4\) cm thì diện tích của tam giác giảm đi \(26\) cm2

Phương pháp giải - Xem chi tiết

B1: Chọn ẩn, đặt điều kiện thích hợp.

      Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

      Lập hệ phương trình biểu thị sự tương quan giữa các đại lượng.

B2: Giải hệ phương trình.

B3: Kiểm tra trong các nghiệm tìm được nghiệm nào thỏa mãn điều kiện, nghiệm nào không thỏa mãn, rồi trả lời.

Chú ý: Tam giác vuông có độ dài hai cạnh góc vuông \(a,\ b\) có diện tích là: \(S=\dfrac{1}{2}ab\).

Lời giải chi tiết

Gọi \(x\) (cm), \(y\) (cm) là độ dài hai cạnh góc vuông của tam giác vuông. Điều kiện \(x > 2, y > 4\).

\(\Rightarrow\) Diện tích tam giác vuông lúc ban đầu là: \(S=\dfrac{1}{2}xy\) \((cm^2)\).

Độ dài hai cạnh sau khi tăng mỗi cạnh thêm \(3\) cm là:  \((x+3)\) (cm) và \((y+3)\) (cm).

\(\Rightarrow\) Diện tích tam giác sau khi tăng độ dài cạnh là: \(\dfrac{1}{2}(x+3)(y+3) \) \((cm^2)\)

Vì diện tích lúc này tăng thêm \(36\) cm2 so với ban đầu, nên ta có phương trình:

\(\dfrac{1}{2}(x + 3)(y + 3)= \dfrac{1}{2}xy + 36\) (1) 

+ Nếu một cạnh giảm đi \(2\)cm, cạnh kia giảm đi \(4\) cm thì độ dài 2 cạnh sau khi giảm là: \((x-2)\) (cm) và \((y-4)\) (cm)

\(\Rightarrow\) Diện tích tam giác sau khi giảm độ dài cạnh là: \(\dfrac{1}{2}(x-2)(y-4)\) \((cm^2)\)

Lúc này diện tích tam giác giảm \(26\) \(cm^2\) so với ban đầu, nên ta có phương trình:

\(\dfrac{1}{2}(x - 2)(y- 4) = \dfrac{1}{2}xy - 26\) (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{\begin{matrix} \dfrac{1}{2}(x + 3)(y + 3)= \dfrac{1}{2}xy + 36 & & \\ \dfrac{1}{2}(x - 2)(y- 4) = \dfrac{1}{2}xy - 26 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x + 3)(y + 3)= xy + 72 & & \\ (x -2)(y - 4)= xy -52 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} xy + 3x + 3y + 9 = xy + 72 & & \\ xy - 4x - 2y + 8 = xy - 52 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} xy + 3x + 3y -xy  = 72-9 & & \\ xy - 4x - 2y - xy= - 52 -8& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 3x + 3y = 63 & & \\ -4x - 2y =- 60 & & \end{matrix}\right.\)

\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
x + y = 21\\
2x + y = 30
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
2x + y - \left( {x + y} \right) = 30 - 21\\
x + y = 21
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 9\\
9 + y = 21
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 9\\
y = 12
\end{array} \right.\left( {\,thỏa\,mãn} \right)
\end{array}\)

Vậy độ dài hai cạnh góc vuông là \(9\) cm, \(12\) cm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved