Bài 3 trang 171 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho tam giác ABC cân tại C có CA = CB = 10 cm, AB = 12 cm. Kẻ \(CM \bot AB(M \in AB).\)

a) Chứng minh rằng MA = MB.

b) Tính độ dài CM.

c) Kẻ \(MK \bot BC(K \in BC),MH \bot AC.\)  Chứng minh rằng MK = MH.

Lời giải chi tiết

 

a) Xét tam giác AMC vuông tại M và tam giác BMC vuông tại M ta có:

AC = BC (tam giác ABC cân tại C)

\(\widehat {CAM} = \widehat {CBM}(\Delta ABC\)  cân tại C)

Do đó: \(\Delta AMC = \Delta BMC\)  (cạnh huyền - góc nhọn) => MA = MB.

b) Ta có: \(MA = MB = {{AB} \over 2} = {{12} \over 2} = 6(cm)\)

Tam giác AMC vuông tại M có: \(M{A^2} + M{C^2} = A{C^2}\)   (định lí Pythagoare).

Do đó: \({6^2} + M{C^2} = {10^2} \Rightarrow M{C^2} = {10^2} - {6^2} = 100 - 36 = 64.\)

Mà MC > 0 nên \(MC = \sqrt {64}  = 8(cm)\)

c) Xét tam giác AMH vuông tại H và tam giác MBK vuông tại K ta có:

AM = BM (chứng minh câu a)

\(\widehat {HAM} = \widehat {KBM}(\Delta ABC\)  cân tại C)

Do đó: \(\Delta AMH = \Delta BMK\)  (cạnh huyền - góc nhọn) => MH = MK.

Vậy MK = MH.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved