PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 3 trang 115 sgk toán lớp 8 tập 1

Đề bài

Cho hình thoi \(ABCD\) có \(\widehat A = {60^0}\). Gọi \(E, F, G, H\) lần lượt là trung điểm của các cạnh \(AB, BC, CD, DA\). Chứng minh rằng đa giác \(EBFGDH\) là lục giác đều.

Phương pháp giải - Xem chi tiết

Áp dụng: 

- Hình thoi có tất cả các cạnh bằng nhau,

- Lục giác đều là hình có sáu cạnh bằng nhau và sáu góc bằng nhau.

Lời giải chi tiết

 

Vì \(ABCD\) là hình thoi (giả thiết) và \(\widehat A = {60^0}\) (giả thiết)

Do đó \(AB = BC = CD = DA\); \(AB//DC;\,BC//AD\).

Lại có \(E,F,G,H\) lần lượt là trung điểm của \(AB,BC,CD,DA\) nên \(AE = EB = BF = FC = CG = GD\)\(\, = DH = HA\)

Vì \(AD//BC\) nên \(\widehat A + \widehat {ABC} = {180^0}\) (\(2\) góc trong cùng phía bù nhau)

\( \Rightarrow \widehat {ABC} = {180^0} - \widehat A = {180^0} - {60^0} \)\(= {120^0}\)

\( \Rightarrow \widehat {ABC} = \widehat {ADC} = {120^0}\) (tính chất hình thoi)

\(\Delta EAH\) có \(AE=AH\) (chứng minh trên) và \(\widehat A=60^0\) nên là tam giác đều (vì tam giác cân có một góc \(60^0\) là tam giác đều)

\( \Rightarrow \widehat {AEH} = \widehat {AHE} = {60^0}\) và \(AE=EH=AH\) (tính chất tam giác đều) 

\(\left\{ \begin{array}{l}
\widehat {AEH} + \widehat {HEB} = {180^0}\\
\widehat {AHE} + \widehat {EHD} = {180^0}
\end{array} \right.\)  (hai góc kề bù)

\( \Rightarrow \widehat {HEB} = \widehat {EH{\rm{D}}} = {180^0} - {60^0} = {120^0}\)

Tương tự:

\(\Delta CFG\) có \(CF=CG\) (chứng minh trên) và \(\widehat C=\widehat A =60^0\) (do ABCD là hình thoi) nên là \(\Delta CFG\) tam giác đều (vì tam giác cân có một góc \(60^0\) là tam giác đều)

\( \Rightarrow \widehat {CFG} = \widehat {CGF} = {60^0}\) và \(CF=FG=CG\) (tính chất tam giác đều) 

\(\left\{ \begin{array}{l}
\widehat {CFG} + \widehat {BFG} = {180^0}\\
\widehat {CGF} + \widehat {FGD} = {180^0}
\end{array} \right.\)  (hai góc kề bù)

\( \Rightarrow \widehat {BFG} = \widehat {FGD} = {180^0} - {60^0} = {120^0}\)

Từ đó ta suy ra: \( EB = BF = GD=HD\)\(\, = EH= FG\) 

\(\widehat {ABC} = \widehat {ADC} \)\(=\widehat {HEB} = \widehat {EH{\rm{D}}}\)\(=\widehat {BFG} =\widehat{F GD} = {120^0}\)

Vậy đa giác \(EBFGDH\) có tất cả các góc bằng nhau, tất cả các cạnh bằng nhau ( bằng nửa cạnh hình thoi)

Nên \(EBFGDH\) là một lục giác đều (dấu hiệu nhận biết lục giác đều)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved