Câu hỏi 3 - Mục Bài tập trang 106 SGK Toán 11 tập 2 - Cánh Diều

1. Nội dung câu hỏi

Với giả thiết ở Bài tập 2, hãy:

a) Chứng minh rằng \(MN\parallel BC\). Tính khoảng cách giữa hai đường thẳng \(MN\) và \(BC\).

b) Chứng minh rằng \(MP\parallel \left( {BCD} \right)\). Tính khoảng cách từ đường thẳng \(MP\) đến mặt phẳng \(\left( {BCD} \right)\).

c) Chứng minh rằng \(\left( {MNP} \right)\parallel \left( {BCD} \right)\). Tính khoảng cách giữa hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {BCD} \right)\).


2. Phương pháp giải

a) ‒ Sử dụng tính chất đường trung bình của tam giác.

‒ Cách tính khoảng cách giữa hai đường thẳng song song: Tính khoảng cách từ một điểm thuộc đường thẳng này đến đường thẳng kia.

b) ‒ Cách chứng minh đường thẳng song song với mặt phẳng: Chứng minh đường thẳng đó song song với một đường thẳng nằm trên mặt phẳng.

‒ Cách tính khoảng cách giữa đường thẳng và mặt phẳng song song: Tính khoảng cách từ một điểm trên đường thẳng đến mặt phẳng.

c) ‒ Cách chứng minh hai mặt phẳng song song: Chứng minh mặt phẳng này chứa hai đường thẳng cắt nhau song song với mặt phẳng còn lại.

‒ Cách tính khoảng cách giữa hai mặt phẳng song song: Tính khoảng cách từ một điểm trên mặt phẳng này đến mặt phẳng còn lại.

 

3. Lời giải chi tiết

a) \(M\) là trung điểm của \(AB\).

\(N\) là trung điểm của \(AC\).

\( \Rightarrow MN\) là đường trung bình của tam giác \(ABC\).

\( \Rightarrow MN\parallel BC\).

\(AB \bot BC \Rightarrow MB \bot BC \Rightarrow d\left( {MN,BC} \right) = MB = \frac{1}{2}AB = \frac{a}{2}\).

b) \(M\) là trung điểm của \(AB\).

\(P\) là trung điểm của \(A{\rm{D}}\).

\( \Rightarrow MP\) là đường trung bình của tam giác \(ABD\).

\(\left. \begin{array}{l} \Rightarrow MP\parallel BD\\B{\rm{D}} \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow MP\parallel \left( {BC{\rm{D}}} \right)\).

\(AB \bot \left( {BCD} \right) \Rightarrow MB \bot \left( {BCD} \right) \Rightarrow d\left( {MP,\left( {BCD} \right)} \right) = d\left( {M,\left( {BCD} \right)} \right) = MB = \frac{a}{2}\).

c)

\(\left. \begin{array}{l}\left. \begin{array}{l} \Rightarrow MN\parallel BC\\B{\rm{C}} \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {BC{\rm{D}}} \right)\\MP\parallel \left( {BC{\rm{D}}} \right)\\MN,MP \subset \left( {MNP} \right)\end{array} \right\} \Rightarrow \left( {MNP} \right)\parallel \left( {BC{\rm{D}}} \right)\)

\( \Rightarrow d\left( {\left( {MNP} \right),\left( {BCD} \right)} \right) = d\left( {M,\left( {BCD} \right)} \right) = MB = \frac{a}{2}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved