1. Nội dung câu hỏi
Với giả thiết ở Bài tập 2, hãy:
a) Chứng minh rằng \(MN\parallel BC\). Tính khoảng cách giữa hai đường thẳng \(MN\) và \(BC\).
b) Chứng minh rằng \(MP\parallel \left( {BCD} \right)\). Tính khoảng cách từ đường thẳng \(MP\) đến mặt phẳng \(\left( {BCD} \right)\).
c) Chứng minh rằng \(\left( {MNP} \right)\parallel \left( {BCD} \right)\). Tính khoảng cách giữa hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {BCD} \right)\).
2. Phương pháp giải
a) ‒ Sử dụng tính chất đường trung bình của tam giác.
‒ Cách tính khoảng cách giữa hai đường thẳng song song: Tính khoảng cách từ một điểm thuộc đường thẳng này đến đường thẳng kia.
b) ‒ Cách chứng minh đường thẳng song song với mặt phẳng: Chứng minh đường thẳng đó song song với một đường thẳng nằm trên mặt phẳng.
‒ Cách tính khoảng cách giữa đường thẳng và mặt phẳng song song: Tính khoảng cách từ một điểm trên đường thẳng đến mặt phẳng.
c) ‒ Cách chứng minh hai mặt phẳng song song: Chứng minh mặt phẳng này chứa hai đường thẳng cắt nhau song song với mặt phẳng còn lại.
‒ Cách tính khoảng cách giữa hai mặt phẳng song song: Tính khoảng cách từ một điểm trên mặt phẳng này đến mặt phẳng còn lại.
3. Lời giải chi tiết
a) \(M\) là trung điểm của \(AB\).
\(N\) là trung điểm của \(AC\).
\( \Rightarrow MN\) là đường trung bình của tam giác \(ABC\).
\( \Rightarrow MN\parallel BC\).
\(AB \bot BC \Rightarrow MB \bot BC \Rightarrow d\left( {MN,BC} \right) = MB = \frac{1}{2}AB = \frac{a}{2}\).
b) \(M\) là trung điểm của \(AB\).
\(P\) là trung điểm của \(A{\rm{D}}\).
\( \Rightarrow MP\) là đường trung bình của tam giác \(ABD\).
\(\left. \begin{array}{l} \Rightarrow MP\parallel BD\\B{\rm{D}} \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow MP\parallel \left( {BC{\rm{D}}} \right)\).
\(AB \bot \left( {BCD} \right) \Rightarrow MB \bot \left( {BCD} \right) \Rightarrow d\left( {MP,\left( {BCD} \right)} \right) = d\left( {M,\left( {BCD} \right)} \right) = MB = \frac{a}{2}\).
c)
\(\left. \begin{array}{l}\left. \begin{array}{l} \Rightarrow MN\parallel BC\\B{\rm{C}} \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {BC{\rm{D}}} \right)\\MP\parallel \left( {BC{\rm{D}}} \right)\\MN,MP \subset \left( {MNP} \right)\end{array} \right\} \Rightarrow \left( {MNP} \right)\parallel \left( {BC{\rm{D}}} \right)\)
\( \Rightarrow d\left( {\left( {MNP} \right),\left( {BCD} \right)} \right) = d\left( {M,\left( {BCD} \right)} \right) = MB = \frac{a}{2}\).
Unit 12: Celebrations
Chủ đề 5. Phát triển cộng đồng
Chủ đề 1. Tự tin là chính mình
SOẠN VĂN 11 TẬP 1
CHƯƠNG IV. SINH SẢN - SINH HỌC 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11