Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình sau:
LG a
LG a
\(4{x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\)
Phương pháp giải:
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì
\(\left\{ \begin{array}{l}
{x_1} + {x_2} = - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)
Chú ý: Trước tiên cần kiểm tra điều kiện là phương trình đã cho có nghiệm hay không, nếu không có nghiệm thì không tính được tổng và tích 2 nghiệm đó.
Lời giải chi tiết:
Phương trình \(4{x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\) có nghiệm vì \(a = 4, c = -5\) trái dấu nhau nên phương trình luôn có 2 nghiệm. Nên theo hệ thức Vi-ét ta có
\(\displaystyle{x_1} + {x_2} = {\rm{ }} - {1 \over 2};{x_1}{x_2} = - {5 \over 4}\)
LG b
LG b
\(9{x^2}-{\rm{ }}12x{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\)
Phương pháp giải:
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì
\(\left\{ \begin{array}{l}
{x_1} + {x_2} = - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)
Chú ý: Trước tiên cần kiểm tra điều kiện là phương trình đã cho có nghiệm hay không, nếu không có nghiệm thì không tính được tổng và tích 2 nghiệm đó.
Lời giải chi tiết:
Phương trình \(9{x^2}-{\rm{ }}12x{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\) có \(\Delta' = 36 - 36 = 0\). Phương trình có nghiệm kép. Nên theo hệ thức Vi-ét ta có
\(\displaystyle{x_1} + {x_2} = {{12} \over 9} = {4 \over 3};{x_1}{x_2} = {4 \over 9}\)
LG c
LG c
\(5{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\)
Phương pháp giải:
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì
\(\left\{ \begin{array}{l}
{x_1} + {x_2} = - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)
Chú ý: Trước tiên cần kiểm tra điều kiện là phương trình đã cho có nghiệm hay không, nếu không có nghiệm thì không tính được tổng và tích 2 nghiệm đó.
Lời giải chi tiết:
Phương trình \(5{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\) có
\(\Delta =\) \({1^2} - {\rm{ }}4{\rm{ }}.{\rm{ }}5{\rm{ }}.{\rm{ }}2{\rm{ }} = {\rm{ }} - 39{\rm{ }} < {\rm{ }}0\)
Phương trình vô nghiệm, nên không tính được tổng và tích các nghiệm.
LG d
LG d
\(159{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\)
Phương pháp giải:
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì
\(\left\{ \begin{array}{l}
{x_1} + {x_2} = - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)
Chú ý: Trước tiên cần kiểm tra điều kiện là phương trình đã cho có nghiệm hay không, nếu không có nghiệm thì không tính được tổng và tích 2 nghiệm đó.
Lời giải chi tiết:
Phương trình \(159{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\) có hai nghiệm phân biệt vì \(a\) và \(c\) trái dấu nên theo hệ thức Vi-ét ta có
\(\displaystyle{x_1} + {x_2} = {\rm{ }}{2 \over {159}};{x_1}{x_2} = - {1 \over {159}}\)
Bài 34. Thực hành: Phân tích một số ngành công nghiệp trọng điểm ở Đông Nam Bộ
Chương III. QUANG HỌC
Đề thi vào 10 môn Văn Hà Nam
Đề thi giữa kì 2 - Sinh 9
Đề cương ôn tập học kì 2