Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Cho hàm số \(y = -2x + 3.\)
a) Vẽ đồ thị của hàm số.
b) Tính góc tạo bởi đường thẳng \(y = -2x + 3\) và trục \(Ox\) (làm tròn đến phút).
Phương pháp giải - Xem chi tiết
a) Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng:
+) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\)
+) Cắt trục tung tại điểm \(B(0;b).\)
Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số \(y=ax+b \, \, (a\neq 0).\)
b) Góc tạo bởi đường thẳng \(y=a x+b \, \ (a \neq 0)\) là góc \(\alpha \) ta có: \(tan \alpha = a.\)
+) Với \(a<0\), góc \(\alpha\) là góc tù.
+) Với \(a>0\), góc \(\alpha\) là góc nhọn.
Sử dụng các công thức lượng giác để tính góc cần tìm: Cho tam giác \(ABC\) vuông tại \(A\). Khi đó: \(\tan B = \dfrac{AC}{AB}.\)
Lời giải chi tiết
a) Hàm số \(y = -2x + 3.\)
Cho \(x=0 \Rightarrow y=-2.0+3=0+3=3 \Rightarrow A(0; 3)\)
Cho \(y=0 \Rightarrow 0=-2.x+3 \Leftrightarrow x=\dfrac{3}{2} \Rightarrow B{\left(\dfrac{3}{2}; 0\right)}\)
Vẽ đường thẳng đi qua hai điểm \(A(0; 3)\) và \(B{\left(\dfrac{3}{2}; 0\right)}\) ta được đồ thị hàm số \(y = -2x + 3.\).
Đồ thị được vẽ như hình bên.
b) Gọi \(\alpha \) là góc giữa đường thẳng \(y = -2x + 3\) và trục \(Ox \Rightarrow \alpha = \widehat{ABx}\).
Xét tam giác vuông \(OAB\) vuông tại \(O\), ta có:
\(\tan \widehat {OBA} = \dfrac{OA}{OB} = \dfrac{3}{\dfrac{3}{2}}=2\)
Thực hiện bấm máy tính, ta được:
\(\widehat {ABO} \approx {63^0}26'\)
Lại có \(\widehat {ABO}\) và \(\widehat {ABx}\) là hai góc kề bù, tức là:
\(\widehat {ABO} + \widehat {ABx} =180^0\)
\(\Leftrightarrow \widehat {ABx}=180^0 -\widehat {ABO} \)
\(\Leftrightarrow \widehat {ABx} \approx 180^0 -{63^0}26' \)
\(\Leftrightarrow \widehat {ABx} \approx 116^0 34'\)
Vậy \(\alpha \approx {116^0}34'\).
Bài 29. Vùng Tây Nguyên (tiếp theo)
Đề thi vào 10 môn Văn Yên Bái
Đề thi vào 10 môn Văn Hòa Bình
TÀI LIỆU DẠY - HỌC HÓA 9 TẬP 1
Đề thi vào 10 môn Toán Vĩnh Phúc