Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Giải tam giác \(ABC\) vuông tại \(A\), biết rằng:
LG a
LG a
\(b=10cm;\ \widehat{C}=30^{\circ}\)
Phương pháp giải:
Giải tam giác vuông là đi tìm tất cả các yếu tố (góc và cạnh) chưa biết của tam giác đó.
+) Sử dụng các hệ thức về cạnh và góc trong tam giác vuông: Tam giác \(ABC\) vuông tại \(A\) thì:
\(b=a.\sin B = a . \cos C;\) \(b = c. \tan B = c. \cot C;\)
\(c=a.\sin C = a. \cos B;\) \(c=b.\tan C = b.\cot B\).
Lời giải chi tiết:
Quy ước: Tam giác ABC vuông tại A có a = BC ; b = AC; c = AB
(H.a)
+) Ta có: \(\widehat{B} + \widehat{C}=90^{\circ} \Rightarrow \widehat{B}=90^o -30^{\circ}=60^{\circ}\)
+) Lại có
\(AB = AC. \tan C=10.tan 30^o=\dfrac{10\sqrt 3}{3} \approx 5,77(cm)\)
\(AC=BC. \cos C \Rightarrow 10=BC. \cos 30^o \Rightarrow BC=\dfrac{10}{\cos 30^o}=\dfrac{20\sqrt 3}{3} \approx 11,55(cm)\).
LG b
LG b
\(c=10cm;\ \widehat{C}=45^{\circ}\)
Phương pháp giải:
Giải tam giác vuông là đi tìm tất cả các yếu tố (góc và cạnh) chưa biết của tam giác đó.
+) Sử dụng các hệ thức về cạnh và góc trong tam giác vuông: Tam giác \(ABC\) vuông tại \(A\) thì:
\(b=a.\sin B = a . \cos C;\) \(b = c. \tan B = c. \cot C;\)
\(c=a.\sin C = a. \cos B;\) \(c=b.\tan C = b.\cot B\).
Lời giải chi tiết:
(H.b)
+) Xét tam giác \(ABC\) vuông tại \(A\) có \(AB=10,\ \widehat{C}=45^o\) nên \(ABC\) là tam giác vuông cân tại A \(\Rightarrow \widehat{B}=45^{\circ}; AB=AC=10(cm)\)
+) Lại có: \(AB=BC. \sin C \Rightarrow 10=BC. sin 45^o\)
\(\Rightarrow BC=\dfrac{10}{\sin 45^o}=10\sqrt 2 \approx 14,14(cm).\)
LG c
LG c
\(a=20cm;\ \widehat{B}=35^{\circ}\)
Phương pháp giải:
Giải tam giác vuông là đi tìm tất cả các yếu tố (góc và cạnh) chưa biết của tam giác đó.
+) Sử dụng các hệ thức về cạnh và góc trong tam giác vuông: Tam giác \(ABC\) vuông tại \(A\) thì:
\(b=a.\sin B = a . \cos C;\) \(b = c. \tan B = c. \cot C;\)
\(c=a.\sin C = a. \cos B;\) \(c=b.\tan C = b.\cot B\).
Lời giải chi tiết:
(H.c)
+) Ta có: \(\widehat{C}+ \widehat{B}=90^{\circ} \Rightarrow \widehat{C}= 90^o - \widehat{B}=90^o - 35^{\circ}=55^{\circ}.\)
+) Lại có: \(AB=BC\cdot cosB=20\cdot cos35^{\circ}\approx 16,383 (cm)\)
\(AC= BC \cdot sinB=20\cdot sin35^{\circ}\approx 11,472 (cm)\).
LG d
LG d
\(c=21cm;\ b=18cm\)
Phương pháp giải:
Giải tam giác vuông là đi tìm tất cả các yếu tố (góc và cạnh) chưa biết của tam giác đó.
+) Sử dụng định lý Pytago: Tam giác \(ABC\) vuông tại \(A\) thì \(BC^2 = AC^2 + AB^2.\)
+) Sử dụng các hệ thức về cạnh và góc trong tam giác vuông: Tam giác \(ABC\) vuông tại \(A\) thì:
\(b=a.\sin B = a . \cos C;\) \(b = c. \tan B = c. \cot C;\)
\(c=a.\sin C = a. \cos B;\) \(c=b.\tan C = b.\cot B\).
Lời giải chi tiết:
(H.d)
Áp dụng định lí Pytago vào tam giác vuông ABC, ta được: \(BC^2=AC^2+AB^2=18^2 +21^2=765\)
\(\Rightarrow BC = \sqrt{765}=3\sqrt{85} \approx 27,66(cm)\)
Lại có:
\(\tan B=\dfrac{AC}{AB}=\dfrac{18}{21} \approx 0,8571\)
Bấm máy tính: SHIFT tan 0,8571 \(\Rightarrow \widehat{B}\approx 41^{\circ}\)
Vì \(\widehat{C }+\widehat{B}=90^o \Rightarrow \widehat{C}= 90^o - 41^o =49^{\circ}\)
CHƯƠNG 2: ĐIỆN TỪ HỌC
QUYỂN 4. LẮP ĐẶT MẠNG ĐIỆN TRONG NHÀ
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 9
ĐỀ THI HỌC KÌ 1 MỚI NHẤT CÓ LỜI GIẢI
Đề kiểm tra 1 tiết - Chương 8 - Sinh 9