Bài 24 trang 58 SBT Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

Cho hình trụ có bán kính bằng R, trục OO’ bằng h. Một mặt phẳng (P) thay đổi đi qua O, tạo với đáy hình trụ góc \(\alpha \) cho trước và cắt hai đáy của hình trụ đã cho theo các dây AB và CD ( dây AB đi qua O).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

LG 1

Tính diện tích tứ giác ABCD.

Lời giải chi tiết:

Gọi I là trung điểm của CD thì \(O'I \bot CD\), từ đó \(OI \bot CD\). Vậy \(\alpha  = \widehat {{\rm{OIO'}}}\).

Dễ thấy \(AB//CD\), tức là ABCD là hình thang. Mặt khác \(OI \bot CD\) nên \(OI \bot AB.\)

Vậy ABCD là hình thang cân.

Diện tích S của ABCD được tính bởi

\(S = {1 \over 2}(AB + CD).OI\)

Ta có : \(AB = 2R,OI = {{OO'} \over {\sin \alpha }} = {h \over {\sin \alpha }}.\)

\(\eqalign{  & O'I = OO'\cot \alpha  \cr&\Rightarrow ID = \sqrt {O'{D^2} - O'{I^2}}  = \sqrt {{R^2} - {h^2}{{\cot }^2}\alpha }   \cr  &  \Rightarrow CD = 2\sqrt {{R^2} - {h^2}{{\cot }^2}\alpha }  \cr} \).

Vậy \(S = {1 \over 2}(2R + 2\sqrt {{R^2} - {h^2}{{\cot }^2}\alpha } ).{h \over {\sin \alpha }}\)

\(= (R + \sqrt {{R^2} - {h^2}{{\cot }^2}\alpha } ).{h \over {\sin \alpha }}.\)

LG 2

Chứng minh rằng hình chiếu vuông góc H của điểm O’ trên (P) thuộc một đường tròn cố định.

Lời giải chi tiết:

Trong mặt phẳng (OO’I), kẻ \(O'H \bot OI\) thì là hình chiếu của O’ trên mp(P).

Xét tam giác vuông O’IH, ta có \(O'H = O'I\sin \alpha  = h.\cot \alpha .\sin \alpha  = h.c{\rm{os}}\alpha {\rm{.}}\)

Kẻ đường cao HJ của tam giác vuông O’HO thì \(O'J.OO' = O'{H^2},\) 

\( \Rightarrow O'J = {{O'{H^2}} \over {OO'}} = h.{\cos ^2}\alpha ,\) từ đó suy ra J là điểm cố định.

Mặt khác \(H{J^2} = O'{H^2} - O'{J^2} \)

\(= {h^2}.{\cos ^2}\alpha  - {h^2}.{\cos ^4}\alpha \)

\(= {h^2}{\cos ^2}\alpha .{\sin ^2}\alpha .\)

Vậy HJ có độ dài không đổi, từ đó ta có điểm H thuộc đường tròn tâm J, bán kính cho trước, trong mặt phẳng vuông góc với OO’ tại J.

Chú ý. Cũng có thể thấy H thuộc mặt trụ T có trục là OO’, bán kính đáy R’ cho trước.

Cụ thể \(R' = h.\cos \alpha .\sin \alpha \), đồng thời H thuộc mặt phẳng vuông góc với trục OO’ tại điểm J.

Từ đó H thuộc đường tròn là giao của mặt trụ T và mặt phẳng nói trên.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved