Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Giải các hệ phương trình sau bằng phương pháp cộng đại số:
LG a
LG a
\(\left\{\begin{matrix} -5x + 2y = 4 & & \\ 6x - 3y =-7 & & \end{matrix}\right.\)
Phương pháp giải:
+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.
+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.
+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho.
Lời giải chi tiết:
Nhân phương trình trên với \(3\), nhân phương trình dưới với \(2\), rồi cộng vế với vế của hai phương trình trong hệ, ta được:
\(\left\{\begin{matrix} -5x + 2y = 4 & & \\ 6x - 3y =-7 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} -15x + 6y = 12& & \\ 12x - 6y =-14 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -3x = -2& & \\ -15x + 6y = 12& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = \dfrac{2}{3}& & \\ 6y = 12 + 15 . x& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x = \dfrac{2}{3}& & \\ 6y = 12+15.\dfrac{2}{3}& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = \dfrac{2}{3}& & \\ 6y = 22& & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} x = \dfrac{2}{3}& & \\ y =\dfrac{11}{3}& & \end{matrix}\right.\)
Vậy hệ đã cho có nghiệm duy nhất là \({\left(\dfrac{2}{3}; \dfrac{11}{3} \right)}\)
LG b
LG b
\(\left\{\begin{matrix} 2x - 3y = 11& & \\ -4x + 6y = 5 & & \end{matrix}\right.\)
Phương pháp giải:
+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.
+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.
+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho.
Lời giải chi tiết:
Nhân hai vế phương trình trên với \(2\) rồi cộng hai vế của hai phương trình với nhau, ta được:
\(\left\{\begin{matrix} 2x - 3y = 11& & \\ -4x + 6y = 5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 4x - 6y = 22& & \\ -4x + 6y = 5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 4x - 6y = 22& & \\ 4x - 6y = -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 4x - 6y = 22& & \\ 0x - 0y = 27\ (vô\ lý) & & \end{matrix}\right.\)
Vậy hệ phương trình vô nghiệm.
LG c
LG c
\(\left\{\begin{matrix} 3x - 2y = 10& & \\ x - \dfrac{2}{3}y = 3\dfrac{1}{3} & & \end{matrix}\right.\)
Phương pháp giải:
+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.
+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.
+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho.
Lời giải chi tiết:
Đổi hỗn số về phân số rồi nhân hai vế của phương trình dưới với \(3\) sau đó trừ vế với vế của hai phương trình ta được:
\(\left\{\begin{matrix} 3x - 2y = 10& & \\ x - \dfrac{2}{3}y = 3\dfrac{1}{3} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 3x - 2y = 10& & \\ x - \dfrac{2}{3}y = \dfrac{10}{3} & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 3x - 2y = 10& & \\ 3x - 2y = 10 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 0 = 0 (Luôn đúng) & & \\ 3x -2y= 10& & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} x \in \mathbb{R} & & \\ y= \dfrac{3x-10}{2}& & \end{matrix}\right.\)
Vậy hệ phương trình có vô số nghiệm.
Đề kiểm tra giữa học kì 2
Tiếng Anh 9 mới tập 2
Tiếng Anh 9 mới tập 1
CHƯƠNG IV. HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI
Đề kiểm tra 1 tiết - Chương 4 - Sinh 9