Tính đạo hàm của các hàm số sau:
LG a
\(y = \frac{{1 + x - {x^2}}}{{1 - x + {x^2}}}\)
Lời giải chi tiết:
LG b
\(y = \frac{{\left( {2 - {x^2}} \right)\left( {3 - {x^3}} \right)}}{{{{\left( {1 - x} \right)}^2}}}\)
Lời giải chi tiết:
LG c
\(y = \cos 2x - 2\sin x\)
Lời giải chi tiết:
\(\begin{array}{l}y = \cos 2x - 2\sin x\\y' = \left( {\cos 2x} \right)' - 2\left( {\sin x} \right)'\\ = - \left( {2x} \right)'\sin 2x - 2\cos x\\ = - 2\sin 2x - 2\cos x\end{array}\)
LG d
\(y = \frac{{\cos x}}{{2{{\sin }^2}x}}\)
Lời giải chi tiết:
\(\begin{array}{l}y = \frac{{\cos x}}{{2{{\sin }^2}x}}\\y' = \frac{{\left( {\cos x} \right)'.2{{\sin }^2}x - \cos x\left( {2{{\sin }^2}x} \right)'}}{{4{{\sin }^4}x}}\\ = \frac{{ - \sin x.2{{\sin }^2}x - \cos x.2.2\left( {\sin x} \right)'\sin x}}{{4{{\sin }^4}x}}\\ = \frac{{ - 2{{\sin }^3}x - 4\cos x.\cos x.\sin x}}{{4{{\sin }^4}x}}\\ = \frac{{ - 2\sin x\left( {{{\sin }^2}x + 2{{\cos }^2}x} \right)}}{{4{{\sin }^4}x}}\\ = - \frac{{{{\sin }^2}x + {{\cos }^2}x + {{\cos }^2}x}}{{2{{\sin }^3}x}}\\ = - \frac{{1 + {{\cos }^2}x}}{{2{{\sin }^3}x}}\end{array}\)
LG e
\(y = {\cos ^2}\frac{x}{3}\tan \frac{x}{2}\)
Lời giải chi tiết:
\(y = {\cos ^2}\frac{x}{3}\tan \frac{x}{2}\)
\(\begin{array}{l}y' = \left( {{{\cos }^2}\frac{x}{3}} \right)'\tan \frac{x}{2} + {\cos ^2}\frac{x}{3}\left( {\tan \frac{x}{2}} \right)'\\ = 2\cos \frac{x}{3}.\left( {\cos \frac{x}{3}} \right)'.\frac{{\sin \frac{x}{2}}}{{\cos \frac{x}{2}}} + {\cos ^2}\frac{x}{3}.\frac{{\left( {\frac{x}{2}} \right)'}}{{{{\cos }^2}\frac{x}{2}}}\\ = 2\cos \frac{x}{3}.\left( {\frac{x}{3}} \right)'.\left( { - \sin \frac{x}{3}} \right).\frac{{\sin \frac{x}{2}}}{{\cos \frac{x}{2}}} + {\cos ^2}\frac{x}{3}.\frac{{\frac{1}{2}}}{{{{\cos }^2}\frac{x}{2}}}\\ = - 2\cos \frac{x}{3}.\frac{1}{3}\sin \frac{x}{3}.\frac{{\sin \frac{x}{2}}}{{\cos \frac{x}{2}}} + \frac{1}{2}.\frac{{{{\cos }^2}\frac{x}{3}}}{{{{\cos }^2}\frac{x}{2}}}\\ = - \frac{1}{3}\sin \frac{{2x}}{3}\tan \frac{x}{2} + \frac{{{{\cos }^2}\frac{x}{3}}}{{2{{\cos }^2}\frac{x}{2}}}\end{array}\)
LG f
\(y = \sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)}\)
Lời giải chi tiết:
\(\begin{array}{l}y = \sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} \\y' = \frac{{\left[ {\sin \left( {2x - \frac{\pi }{6}} \right)} \right]'}}{{2\sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} }}\\ = \frac{{\left( {2x - \frac{\pi }{6}} \right)'.\cos \left( {2x - \frac{\pi }{6}} \right)}}{{2\sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} }}\\ = \frac{{2\cos \left( {2x - \frac{\pi }{6}} \right)}}{{2\sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} }}\\ = \frac{{\cos \left( {2x - \frac{\pi }{6}} \right)}}{{\sqrt {\sin \left( {2x - \frac{\pi }{6}} \right)} }}\end{array}\)
LG g
\(y = \cos \frac{x}{{x + 1}}\)
Lời giải chi tiết:
\(y = \cos \frac{x}{{x + 1}}\)
\(\begin{array}{l}y' = \left( {\frac{x}{{x + 1}}} \right)'.\left( { - \sin \frac{x}{{x + 1}}} \right)\\ = \frac{{\left( x \right)'\left( {x + 1} \right) - x\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}}.\left( { - \sin \frac{x}{{x + 1}}} \right)\\ = - \frac{{1.\left( {x + 1} \right) - x.1}}{{{{\left( {x + 1} \right)}^2}}}\sin \frac{x}{{x + 1}}\\ = - \frac{1}{{{{\left( {x + 1} \right)}^2}}}\sin \frac{x}{{x + 1}}\end{array}\)
LG h
\(y = \frac{{{x^2} - 1}}{{\sin 3x}}\)
Lời giải chi tiết:
\(y = \frac{{{x^2} - 1}}{{\sin 3x}}\)
\(\begin{array}{l}y' = \frac{{\left( {{x^2} - 1} \right)'\sin 3x - \left( {{x^2} - 1} \right).\left( {\sin 3x} \right)'}}{{{{\sin }^2}3x}}\\ = \frac{{2x\sin 3x - \left( {{x^2} - 1} \right).\left( {3x} \right)'\cos 3x}}{{{{\sin }^2}3x}}\\ = \frac{{2x\sin 3x - \left( {{x^2} - 1} \right).3\cos 3x}}{{{{\sin }^2}3x}}\\ = \frac{{2x\sin 3x - 3\left( {{x^2} - 1} \right)\cos 3x}}{{{{\sin }^2}3x}}\end{array}\)
LG i
\(y = 3{\sin ^2}x\cos x + {\cos ^2}x\)
Lời giải chi tiết:
\(\begin{array}{l}y = 3{\sin ^2}x\cos x + {\cos ^2}x\\y' = 3.\left[ {\left( {{{\sin }^2}x} \right)'\cos x + {{\sin }^2}x\left( {\cos x} \right)'} \right] + 2\cos x\left( {\cos x} \right)'\\ = 3\left[ {2\sin x\left( {\sin x} \right)'\cos x + {{\sin }^2}x.\left( { - \sin x} \right)} \right] + 2\cos x\left( { - \sin x} \right)\\ = 3\left( {2\sin x\cos x\cos x - {{\sin }^3}x} \right) - 2\sin x\cos x\\ = 3\left( {\sin 2x\cos x - {{\sin }^3}x} \right) - \sin 2x\\ = 3\sin 2x\cos x - 3{\sin ^3}x - \sin 2x\\ = \sin 2x\left( {3\cos x - 1} \right) - 3{\sin ^3}x\end{array}\)
LG k
\(y = \sqrt {7 - 4x} \cot 3x\)
Lời giải chi tiết:
\(\begin{array}{l}y = \sqrt {7 - 4x} \cot 3x\\y' = \left( {\sqrt {7 - 4x} } \right)'\cot 3x + \sqrt {7 - 4x} \left( {\cot 3x} \right)'\\ = \frac{{\left( {7 - 4x} \right)'}}{{2\sqrt {7 - 4x} }}.\cot 3x + \sqrt {7 - 4x} .\frac{{ - \left( {3x} \right)'}}{{{{\sin }^2}3x}}\\ = \frac{{ - 4}}{{2\sqrt {7 - 4x} }}.\cot 3x + \sqrt {7 - 4x} .\frac{{ - 3}}{{{{\sin }^2}3x}}\\ = \frac{{ - 2\cot 3x}}{{\sqrt {7 - 4x} }} - \frac{{3\sqrt {7 - 4x} }}{{{{\sin }^2}3x}}\end{array}\)
Review (Units 1 - 4)
PHẦN 2. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
Bài 12: Alkane
Chuyên đề 2. Tìm hiểu ngôn ngữ trong đời sống xã hội hiện đại
Chủ đề 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11