GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 20 trang 196 SGK Đại số và Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Hỏi công thức Vi-ét về phương trình bậc hai với hệ số thực có còn đúng cho phương trình bậc hai với hệ số phức không? Vì sao?

Phương pháp giải:

Tính tổng, tích các nghiệm dựa vào công thức nghiệm \(z _{1,2}= {{ - B \pm \delta } \over {2A}}\)

Lời giải chi tiết:

Công thức nghiệm của phương trình bậc hai \(A{z^2} + Bz + C = 0\) là

\(z_{1,2}  = {{ - B \pm \delta } \over {2A}}\left( {{\delta ^2} = {B^2} - 4AC} \right)\)

Do đó:

\({z_1} + {z_2} = \dfrac{{ - B + \delta }}{{2A}} + \dfrac{{ - B - \delta }}{{2A}} \) \(= \dfrac{{ - 2B}}{{2A}} =  - \dfrac{B}{A}\)

\({z_1}{z_2} = \dfrac{{ - B + \delta }}{{2A}}.\dfrac{{ - B - \delta }}{{2A}} \) \(= \dfrac{{{{\left( { - B} \right)}^2} - {\delta ^2}}}{{4{A^2}}} \) \(= \dfrac{{{B^2} - \left( {{B^2} - 4AC} \right)}}{{4{A^2}}} \) \(= \dfrac{{4AC}}{{4{A^2}}} = \dfrac{C}{A}\)

Do đó 

\(\left\{ \begin{array}{l}
{z_1} + {z_2} = - \dfrac{B}{A}\\
{z_1}{z_2} = \dfrac{C}{A}
\end{array} \right.\)

Vậy công thức Viét vẫn còn đúng.

LG b

Tìm hai số phức, biết tổng của chúng bằng \(4 – i\) và tích của chúng bằng \(5(1 – i)\)

Phương pháp giải:

Giả sử \({z_1} + {z_2} = \alpha \); \({z_1}{z_2} = \beta \).

Chứng minh \({z_1},{z_2}\) là hai nghiệm phương trình: \( {z^2} - \alpha z + \beta  = 0\)

Lời giải chi tiết:

Giả sử \({z_1} + {z_2} = \alpha \); \({z_1}{z_2} = \beta \)

\({z_1},{z_2}\) là hai nghiệm phương trình:

\(\left( {z - {z_1}} \right)\left( {z - {z_2}} \right) = 0\) \(\Leftrightarrow {z^2} - \left( {{z_1} + {z_2}} \right)z + {z_1}{z_2} = 0\) \( \Leftrightarrow {z^2} - \alpha z + \beta  = 0\)

Theo đề bài \({z_1} + {z_2} = 4 - i\); \({z_1}{z_2} = 5\left( {1 - i} \right)\,\,\)

nên \({z_1},{z_2}\) là hai nghiệm phương trình

\({z^2} - \left( {4 - i} \right)z + 5\left( {1 - i} \right) = 0\) (*)

\(\Delta  = {\left( {4 - i} \right)^2} - 20\left( {1 - i} \right) \) \(= 16 - 1 - 8i - 20 + 20i =  - 5 + 12i\)

Giả sử \({\left( {x + yi} \right)^2} =  - 5 + 12i \) \(\Leftrightarrow \left\{ \matrix{  {x^2} - {y^2} =  - 5 \hfill \cr  2xy = 12 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  {x^2} - {{36} \over {{x^2}}} =  - 5 \hfill \cr  y = {6 \over x} \hfill \cr}  \right. \) \(\Leftrightarrow \left\{ \matrix{  {x^4} + 5{x^2} - 36 = 0 \hfill \cr  y = {6 \over x} \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  x = 2 \hfill \cr  y = 3 \hfill \cr}  \right.\,\text{ hoặc }\left\{ \matrix{  x =  - 2 \hfill \cr  y =  - 3 \hfill \cr}  \right.\)

Vậy \(\Delta\) có hai căn bậc hai là \( \pm \left( {2 + 3i} \right)\).

Phương trình bậc hai (*) có hai nghiệm:

\({z_1} = {1 \over 2}\left[ {4 - i + \left( {2 + 3i} \right)} \right] = 3 + i\)

\({z_2} = {1 \over 2}\left[ {4 - i - \left( {2 + 3i} \right)} \right] = 1 - 2i\)

LG c

Có phải mọi phương trình bậc hai \({z^2} + Bz + C = 0\) (\(B, C\) là hai số phức) nhận hai nghiệm là hai số phức liên hợp không thực phải có các hệ số \(B, C\) là hai số thực? Vì sao? Điều ngược lại có đúng không?

Lời giải chi tiết:

Nếu phương trình \({z^2} + Bz + C = 0\) có hai nghiệm \({z_1},{z_2}\) là hai số phức liên hợp, \({z_2} = \overline {{z_1}} \), thì theo công thức Vi-ét:

\(\left\{ \begin{array}{l}{z_1} + {z_2} = - B\\{z_1}{z_2} = C\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{z_1} + \overline {{z_1}} = - B\\{z_1}.\overline {{z_1}} = C\end{array} \right.\)

Mà \({z_1} = x + yi \Rightarrow \overline {{z_1}}  = x - yi\)

\(\begin{array}{l} \Rightarrow {z_1} + \overline {{z_1}}  = 2x \in \mathbb{R}\\{z_1}.\overline {{z_1}}  = {x^2} + {y^2} \in \mathbb{R}\end{array}\)

Do đó B, C thực.

Điều ngược lại không đúng vì nếu \(B, C\) thực thì \(\Delta  = {B^2} - 4AC > 0\) hai nghiệm là số thực phân biệt, chúng không phải là liên hợp với nhau. ( Khi \(\Delta  \le 0\) thì phương trình mới có hai nghiệm là hai số phức liên hợp).

Ví dụ: Phương trình \(z^2+2z-3=0\) có nghiệm là z = 1; z =-3.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved