Bài 2 trang 94 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho đường tròn (O) đường kính AB vuông góc với dây CD tại E.

Chứng minh: \(C{D^2} = 4AE.BE\)

Phương pháp giải - Xem chi tiết

+) Chứng minh tam giác ABC vuông tại C, sử dụng hệ thức lượng trong tam giác vuông tính CE theo AE và BE.

+) Sử dụng quan hệ vuông góc giữa đường kính và dây cung chứng minh E là trung điểm của CD \( \Rightarrow CD = 2CE\).

Lời giải chi tiết

 

 

Ta có \(\widehat {ACB}\) là góc nội tiếp chắn nửa đường tròn \( \Rightarrow \widehat {ACB} = {180^0} \Rightarrow \Delta ABC\) vuông tại C.

Áp dụng hệ thức lượng trong tam giác vuông ABC có: \(C{E^2} = AE.BE\).

Ta có: \(AB \bot CD\) tại E \( \Rightarrow E\) là trung điểm của CD (Quan hệ vuông góc giữa đường kính và dây cung) \( \Rightarrow CD = 2CE \)\(\Rightarrow C{D^2} = 4C{E^2} = 4AE.BE\) (đpcm). 

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved