1. Nội dung câu hỏi
Cho hình chóp tứ giác đều \(S.ABCD\) có \(O\) là tâm của đáy và có tất cả các cạnh bằng nhau.
a) Tìm góc giữa đường thẳng \(SA\) và \(\left( {ABCD} \right)\).
b) Tim góc phẳng nhị diện \(\left[ {A,SO,B} \right];\left[ {S,AB,O} \right]\).
2. Phương pháp giải
‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.
‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a'\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a'} \right)\).
3. Lời giải chi tiết
a) \(S.ABCD\) là hình chóp tứ giác đều có \(O\) là tâm của đáy
\( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow \left( {SA,\left( {ABCD} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO}\)
Giả sử hình chóp tứ giác đều có tất cả các cạnh bằng \(a\).
\(\begin{array}{l}AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \Rightarrow AO = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\\\cos \widehat {SAO} = \frac{{AO}}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {SAO} = {45^ \circ }\end{array}\)
Vậy \(\left( {SA,\left( {ABCD} \right)} \right) = {45^ \circ }\)
b) Gọi \(I\) là trung điểm của \(AB\)
\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AO,SO \bot BO\)
Vậy \(\widehat {AOB}\) là góc phẳng nhị diện \(\left[ {A,SO,B} \right]\).
\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow \widehat {AOB} = {90^ \circ }\)
\(\Delta SAB\) đều \( \Rightarrow SI \bot AB\)
\(\Delta OAB\) vuông cân tại \(O \Rightarrow OI \bot AB\)
Vậy \(\widehat {SIO}\) là góc phẳng nhị diện \(\left[ {S,AB,O} \right]\).
Ta có: \(O\) là trung điểm của \(BD\)
\(I\) là trung điểm của \(AB\)
\( \Rightarrow OI\) là đường trung bình của \(\Delta AB{\rm{D}}\)
\( \Rightarrow OI = \frac{1}{2}AD = \frac{a}{2}\)
\(SO = \sqrt {S{A^2} - A{O^2}} = \frac{{a\sqrt 2 }}{2}\)
\(\tan \widehat {SIO} = \frac{{SO}}{{OI}} = \sqrt 2 \Rightarrow \widehat {SIO} \approx 54,{7^ \circ }\)
Review Unit 8
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
CHƯƠNG 1. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
Unit 2: Leisure time
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11