PHẦN GIẢI TÍCH - TOÁN 12

Bài 2 trang 84 SGK Giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các phương trình mũ:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

a) \({3^{2x-1}} + {3^{2x}} =108\);

Phương pháp giải:

+) Sử dụng các công thức cơ bản của hàm lũy thừa, biến đổi phương trình về các dạng cơ bản sau đó giải phương trình.

+) Đưa phương trình về dạng: \({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right).\)

+) Giải các phương trình bằng phương pháp đổi biến.

+) Khi đổi biến nhớ đặt điều kiện cho biến mới.

+) Giải phương trình tìm biến mới, đối chiếu với điều kiện đã đặt. Sau đó quay lại giải phương trình tìm ẩn x ban đầu.

Lời giải chi tiết:

\( \begin{array}{l}\;\;{3^{2x - 1}} + {3^{2x}} = 108\\\Leftrightarrow \dfrac{1}{3}{.3^{2x}} + {3^{2x}} = 108\\ \Leftrightarrow \dfrac{4}{3}{.3^{2x}} = 108\\\Leftrightarrow {3^{2x}} = 81\\\Leftrightarrow {3^{2x}} = {3^4}\\ \Leftrightarrow 2x = 4\\ \Leftrightarrow x = 2.\end{array}\)

Vậy phương trình có nghiệm \(x=2\).

LG b

b) \({2^{x + 1}} + {2^{x - 1}} + {2^x} = 28\);

Lời giải chi tiết:

\(\begin{array}{l}\;\;{2^{x + 1}} + {2^{x - 1}} + {2^x} = 28\\ \Leftrightarrow {2.2^x} + \dfrac{1}{2}{.2^x} + {2^x} = 28\\ \Leftrightarrow \dfrac{7}{2}{.2^x} = 28\\ \Leftrightarrow {2^x} = 8\\ \Leftrightarrow {2^x} = {2^3}\\\Leftrightarrow x = 3.\end{array}\)

Vậy phương trình có nghiệm  \(x = 3.\)

LG c

c) \({64^x}-{8^x}-56 =0\);

Lời giải chi tiết:

\(\begin{array}{l}c)\;\;{64^x} - {8^x} - 56 = 0\\\Leftrightarrow {\left( {{8^x}} \right)^2} - {8^x} - 56 = 0.\end{array}\)

Đặt \({8^x} = t\;\;\left( {t > 0} \right).\) Khi đó ta có:
\( \begin{array}{l}Pt \Leftrightarrow {t^2} - t - 56 = 0\\ \Leftrightarrow \left( {t - 8} \right)\left( {t + 7} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 8 = 0\\t + 7 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 8\;\;\left( {tm} \right)\\t = - 7\;\;\left( {ktm} \right)\end{array} \right..\\ \Rightarrow {8^x} = 8 \Leftrightarrow x = 1.\end{array}\)
Vậy phương trình có nghiệm \(x=1.\)

LG d

d) \({3.4^x}-{2.6^x} = {9^x}\).

Phương pháp giải:

Chia cả 2 vế của pt cho \(9^x>0\).

Lời giải chi tiết:

\(PT \Leftrightarrow {3.4^x} - {2.6^x} - {9^x} = 0\)

Chia cả 2 vế của pt cho \(9^x>0\) ta được:

\(\begin{array}{l}
3.\frac{{{4^x}}}{{{9^x}}} - 2.\frac{{{6^x}}}{{{9^x}}} - 1 = 0\\
\Leftrightarrow 3.{\left( {\frac{4}{9}} \right)^x} - 2.{\left( {\frac{6}{9}} \right)^x} - 1 = 0\\
\Leftrightarrow 3.{\left[ {{{\left( {\frac{2}{3}} \right)}^x}} \right]^2} - 2.{\left( {\frac{2}{3}} \right)^x} - 1 = 0
\end{array}\)

Đặt \({\left( {\dfrac{2}{3}} \right)^x} = t\;\;\left( {t > 0} \right).\) Khi đó ta có:
\( \begin{array}{l}pt \Leftrightarrow 3{t^2} - 2t - 1 = 0\\ \Leftrightarrow \left( {3t + 1} \right)\left( {t - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}3t + 1 = 0\\t - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = - \dfrac{1}{3}\;\;\left( {ktm} \right)\\t = 1\;\;\left( {tm} \right)\end{array} \right.\\\Rightarrow {\left( {\dfrac{2}{3}} \right)^x} = 1 \Leftrightarrow x = 0.\end{array}\)
Vậy phương trình có nghiệm \(x = 0.\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved