PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 2 trang 66 SGK Toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.

 

Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác. 

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.

LG a.

Tính các góc ngoài của tứ giác ở hình 7a.

Phương pháp giải:

Áp dụng định lý: Tổng các góc trong tứ giác bằng \({360^0}\)

Lời giải chi tiết:

\(\widehat A + \widehat B + \widehat C + \widehat D = {360^0}\) (định lý tổng các góc của tứ giác)

\(\begin{array}{l}
\widehat {{D}}= {360^0} - \left( {\widehat A + \widehat B + \widehat C} \right)\\
= {360^0} - \left( {{75}^0+{{90}^0} + {{120}^0}} \right)\\
= {360^0} - {285^0}\\= {75^0}
\end{array}\)

Ta có:

+) \(\widehat {BAD} + \widehat {{A_1}} = {180^0}\) (2 góc kề bù)

\(\begin{array}{l}
\widehat {{A_1}} = {180^0} - \widehat {BAD}\\
= {180^0} - {75^0} = {105^0}.
\end{array}\)

+) \(\widehat {{B_1}} + \widehat {CBA} = {180^0}\) (2 góc kề bù)

\(\begin{array}{l}
\widehat {{B_1}} = {180^0} - \widehat {CBA}\\= {180^0} - {90^0} = {90^0}.
\end{array}\)

+) \(\widehat {{C_1}} + \widehat {BCD} = {180^0}\) (2 góc kề bù)

\(\begin{array}{l}
\widehat {{C_1}} = {180^0} - \widehat {BC{\rm{D}}}\\= {180^0} - {120^0} = {60^0}.
\end{array}\)

+) \(\widehat {{D_1}} + \widehat {ADC} = {180^0}\)

\(\begin{array}{l}
\widehat {{D_1}} = {180^0} - \widehat {{\rm{ADC}}}\\= {180^0} - {75^0} = {105^0}.
\end{array}\)

LG b.

Tính tổng các góc ngoài của tứ giác ở hình 7b (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài): \(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}} = ?\)

Phương pháp giải:

Áp dụng định lý: Tổng các góc trong tứ giác bằng \({360^0}\)

Lời giải chi tiết:

Ta có: 

+) \(\widehat {A} + \widehat {{A_1}} = {180^0}\) (2 góc kề bù) \(\Rightarrow \widehat {{A_1}} = {180^0}-\widehat {A} \)

+) \(\widehat {B} + \widehat {{B_1}} = {180^0}\) (2 góc kề bù) \(\Rightarrow \widehat {{B_1}} = {180^0}-\widehat {B} \)

+) \(\widehat {C} + \widehat {{C_1}} = {180^0}\) (2 góc kề bù) \(\Rightarrow \widehat {{C_1}} = {180^0}-\widehat {C} \)

+) \(\widehat {D} + \widehat {{D_1}} = {180^0}\) (2 góc kề bù) \(\Rightarrow \widehat {{D_1}} = {180^0}-\widehat {D} \)

Lại có: \(\widehat {{A}} + \widehat {{B}} + \widehat {{C}} + \widehat {{D}} = {360^0}\) (định lý tổng 4 góc trong tứ giác ABCD)

Ta có: 

\(\begin{array}{l}
\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}}\\ = \left( {{{180}^0} - \widehat {{A}}} \right) + \left( {{{180}^0} - \widehat {{B}}} \right) \\\;\;\;+ \left( {{{180}^0} - \widehat {{C}}} \right) + \left( {{{180}^0} - \widehat {{D}}} \right)\\
= {180^0}.4 - \left( {\widehat {{A}} + \widehat {{B}} + \widehat {{C}} + \widehat {{D}}} \right)\\
= {720^0} - {360^0} = {360^0}.
\end{array}\)

LG c.

Có nhận xét gì về tổng các góc ngoài của tứ giác?

Phương pháp giải:

Áp dụng tính chất: Tổng hai góc kề bù bằng \({180^0}\)

Lời giải chi tiết:

Nhận xét: Tổng các góc ngoài của tứ giác bằng \({360^0}\) 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved