Đề bài
Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:
a) \(y = (1 - 3m){x^2} + 3\)
b) \(y = (4m - 1){(x - 7)^2}\)
c) \(y = 2({x^2} + 1) + 11 - m\)
Phương pháp giải - Xem chi tiết
Hai số bậc hai (biến x) có dạng \(y = f(x) = a{x^2} + bx + c\) với \(a,b,c \in \mathbb{R}\)và \(a \ne 0\)
Điều kiện: là đa thức bậc hai với hệ số thực, hệ số a khác 0.
Lời giải chi tiết
a) Để hàm số \(y = (1 - 3m){x^2} + 3\) là hàm số bậc hai thì: \(1 - 3m \ne 0\) tức là \(m \ne \frac{1}{3}\)
Vậy \(m \ne \frac{1}{3}\) thì hàm số đã cho là hàm số bậc hai.
b) Để hàm số \(y = (4m - 1){(x - 7)^2}\) là hàm số bậc hai thì: \(4m - 1 \ne 0\) tức là \(m \ne \frac{1}{4}\)
Vậy \(m \ne \frac{1}{4}\) thì hàm số đã cho là hàm số bậc hai.
c) Để hàm số \(y = 2({x^2} + 1) + 11 - m\) là hàm số bậc hai thì: \(2 \ne 0\) và \(m \in \mathbb R\)
Vậy \(m \in \mathbb R\) thì hàm số đã cho là hàm số bậc hai.
Test Yourself 2
Chủ đề 6: Lập kế hoạch tài chính cá nhân
Review (Units 1 - 4)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Toán lớp 10
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 10
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10