1. Tổng ba góc trong một tam giác
2. Hai tam giác bằng nhau
3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
Đề bài
Cho tam giác ABC vuông tại A có AB = 9 cm, AC = 12 cm.
a) Tính độ dài BC.
b) Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho M là trung điểm của AD. Chứng minh rằng \(\Delta AMB = \Delta DMC.\)
c) Chứng minh rằng tam giác ACD vuông.
Lời giải chi tiết
a) Tam giác ABC vuông tại A (gt) \(\Rightarrow B{C^2} = A{B^2} + A{C^2}\) (định lý Pythapore)
Do đó: \(B{C^2} = {9^2} + {12^2} = 81 + 144 = 225.\)
Mà BC > 0 nên \(BC = \sqrt {225} = 15(cm).\)
b) Xét tam giác AMB và DMC ta có:
AM = DM (giả thiết)
BM = CM (M là trung điểm của BC)
\(\widehat {AMB} = \widehat {CMD}\) (hai góc đối đỉnh)
Do đó: \(\Delta AMB = \Delta DMC(c.g.c)\)
c) Ta có: \(\widehat {MBA} = \widehat {MCD}(\Delta AMB = \Delta DMC)\)
Mà hai góc MBA và MCD so le trong. Do đó: AB // CD.
Mà \(AB \bot AC(gt) \Rightarrow AC \bot CD.\) Vậy tam giác ACD vuông tại C.
Unit 6: A Visit to a School
Chủ đề 8: Tìm hiểu các nghề ở địa phương
Chủ đề 3: Thầy cô - người bạn đồng hành
Chương 9. Sinh trưởng và phát triển ở sinh vật
Unit 8: Films
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Vở thực hành Toán Lớp 7