Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Đố em biết vì sao khi \(a > 0\) và phương trình \(a{x^2} + bx + c = 0\) vô nghiệm thì\(a{x^2} + bx + c > 0\) với mọi giá trị của \(x \)?
Phương pháp giải - Xem chi tiết
+) Sử dụng phương trình vô nghiệm khi \(\Delta < 0\).
+) Biến đổi \(ax^2+bx+c=a\left ( x + \dfrac{b}{2a} \right )^{2}-\dfrac{b^{2}-4ac}{4a}\) rồi đánh giá từng hạng tử.
Lời giải chi tiết
Khi \(a > 0\) và phương trình vô nghiệm thì \(\Delta = b{^2} - 4ac<0\).
Do đó: \(-\dfrac{b^{2}-4ac}{4a} > 0\)
Lại có:
\(\begin{array}{l}a{x^2} + bx + c = a\left( {{x^2} + \dfrac{b}{a}x} \right) + c\\ = a\left( {{x^2} + 2.\dfrac{b}{{2a}}.x + \dfrac{{{b^2}}}{{4{a^2}}}} \right) - \dfrac{{{b^2}}}{{4a}} + c\\ = a{\left( {x + \dfrac{b}{{2a}}} \right)^2} - \dfrac{{{b^2} - 4ac}}{{4a}}\end{array}\)
\(=a\left ( x + \dfrac{b}{2a} \right )^{2}+ {\left(-\dfrac{b^{2}-4ac}{4a}\right)}\)
Vì \(a\left ( x + \dfrac{b}{2a} \right )^{2} \ge 0\) với mọi \(x \in R\), mọi \(a>0\).
Lại có \(-\dfrac{b^{2}-4ac}{4a} > 0\) (cmt)
Vì tổng của số không âm và số dương là một số dương do đó
\(a\left ( x + \dfrac{b}{2a} \right )^{2}+ {\left(\dfrac{b^{2}-4ac}{4a}\right)} >0\) với mọi \(x\).
Hay \(a{x^2} + bx + c >0\) với mọi \(x\).
Đề thi vào 10 môn Văn Hưng Yên
Bài 15
Đề thi vào 10 môn Toán Vĩnh Long
Bài 32. Vùng Đông Nam Bộ (tiếp theo)
Unit 2: City life