PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

Bài 19 trang 14 sgk toán 8 tập 2

Đề bài

Viết phương trình ẩn x rồi tính x (mét) trong mỗi hình dưới đây (h.4) (S là diện tích của hình):

Phương pháp giải - Xem chi tiết

Công thức tính diện tích hình chữ nhật: \(S=a\times b\)

Trong đó: \(S\) là diện tích hình chữ nhật

               \(a\) là chiều dài hình chữ nhật

               \(b\) là chiều rộng hình chữ nhật

Công thức tính diện tích hình thang: \(S = \dfrac{{h\left( {a + b} \right)}}{2}\)

Trong đó: \(S\) là diện tích hình thang

               \(a\) và \(b\) là độ dài hai đáy của hình thang

               \(h\) là chiều cao của hình thang. 

- Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau:

+ Quy đồng mẫu hai vế và khử mẫu.

+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).

+ Tìm \(x\)

Lời giải chi tiết

 

a) Chiều dài hình chữ nhật là: \(x+x+2=2x + 2(m)\). 

Diện tích hình chữ nhật là \(S = 9(2x + 2)(m^2)\).

Vì diện tích \(S = 144\) m2 nên ta có phương trình:

\(9(2x +2) = 144\)

\(⇔18 x + 18 =  144\)

\(⇔18 x = 144 - 18\)

\(⇔18x = 126\)

\(\Leftrightarrow x=126:18\)

\(⇔ x = 7\)

Vậy \(x = 7\,m\)

b) Đáy nhỏ của hình thang là: \(x(m)\)

Đáy lớn của hình thang là: \(x + 5(m)\)

Diện tích hình thang là: \(S = \dfrac{1}{2}.6.\left( {x + x + 5} \right) = 3.\left( {2x + 5} \right)\) \((m^2)\)

Mà \(S = 75\left( {{m^2}} \right)\)  nên ta có phương trình:

\(3(2x + 5) = 75\)

\( \Leftrightarrow 2x + 5 = 75:3\)

\(⇔2x + 5 = 25\)

\( \Leftrightarrow 2x = 25 - 5\)

\(⇔2x = 20\)

\( \Leftrightarrow x = 20:2\)

\(⇔x = 10\)

Vậy \(x = 10\;m\).

c) Biểu thức tính diện tích hình là:

\(S = 12.x + 6.4 = 12x + 24\) \((m^2)\)

Mà \(S = 168\) m2 nên ta có:

\(12x + 24 = 168\)

\( \Leftrightarrow 12x = 168 - 24\) 

\( \Leftrightarrow 12x = 144\)

\( \Leftrightarrow x = 144:12\)

\(\Leftrightarrow x = 12\)

Vậy \(x = 12\,m.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved