1. Nội dung câu hỏi
Cho \(a > 0;a \ne 1;{a^{\frac{3}{5}}} = b\)
a) Viết \({a^6};{a^3}b;\frac{{{a^9}}}{{{b^9}}}\) theo lũy thừa cơ số b
b) Tính \({\log _a}b;\,{\log _a}\left( {{a^2}{b^5}} \right);\,{\log _{\sqrt[5]{a}}}\left( {\frac{a}{b}} \right)\)
2. Phương pháp giải
Dựa vào tính chất lũy thừa để biến đổi.
3. Lời giải chi tiết
a) \({a^6} = {a^{\frac{{30}}{5}}} = {\left( {{a^{\frac{3}{5}}}} \right)^{10}} = {b^{10}}\)
\({a^3}b = {a^{\frac{{15}}{5}}}b = {\left( {{a^{\frac{3}{5}}}} \right)^5}b = {b^5}.b = {b^6}\).
\(\left( {\frac{{{a^9}}}{{{b^9}}}} \right) = {\left( {\frac{a}{b}} \right)^9} = {\left( {\frac{a}{{{a^{\frac{3}{5}}}}}} \right)^9} = {\left( {{a^{\frac{2}{5}}}} \right)^9} = {a^{\frac{{18}}{5}}} = {\left( {{a^{\frac{3}{5}}}} \right)^6} = {b^6}\).
b) \({\log _a}b = {\log _a}{a^{\frac{3}{5}}} = \frac{3}{5}\).
\({\log _a}\left( {{a^2}{b^5}} \right) = {\log _a}\left( {{a^2}.{{\left( {{a^{\frac{3}{5}}}} \right)}^5}} \right) = {\log _a}\left( {{a^2}.{a^3}} \right) = {\log _a}\left( {{a^5}} \right) = 5\).
\({\log _{\sqrt[5]{a}}}\left( {\frac{a}{b}} \right) = {\log _{{a^{\frac{1}{5}}}}}\left( {\frac{a}{{{a^{\frac{3}{5}}}}}} \right) = 5{\log _a}{a^{\frac{2}{5}}} = 2\).
Chủ đề 1: Vai trò, tác dụng của môn bóng chuyền đối với sự phát triển thể chất - một số điều luật thi đấu môn bóng chuyền
Chương 2: Sóng
Unit 4: Preserving World Heritage
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
Chủ đề 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11