PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Bài 18 trang 43 sgk toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.

Quy đồng mẫu thức hai phân thức:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.

LG a.

LG a.

 \(\dfrac{{3x}}{{2x + 4}}\) và \(\dfrac{{x + 3}}{{{x^2} - 4}}\)

Phương pháp giải:

Áp dụng quy tắc quy đồng mẫu thức:

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

+ Phân tích mẫu thức thành nhân tử để tìm mẫu thức chung 

\(2x + 4 =2(x+2)\)

\({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right)\)

\(⇒ MTC = 2\left( {x - 2} \right)\left( {x + 2} \right) = 2\left( {{x^2} - 4} \right)\)

+ Nhân tử phụ:

\(2\left( {x - 2} \right)\left( {x + 2} \right) :[2(x+2)]=x-2\)

\(2\left( {x - 2} \right)\left( {x + 2} \right) :[(x-2)(x+2)]=2\)

+ Quy đồng:

\(\dfrac{{3x}}{{2x + 4}} = \dfrac{{3x\left( {x - 2} \right)}}{{2\left( {x + 2} \right)\left( {x - 2} \right)}} = \dfrac{{3x\left( {x - 2} \right)}}{{2\left( {{x^2} - 4} \right)}}\)

\(\dfrac{{x + 3}}{{{x^2} - 4}} = \dfrac{{\left( {x + 3} \right).2}}{{\left( {x - 2} \right)\left( {x + 2} \right).2}} = \dfrac{{2\left( {x + 3} \right)}}{{2\left( {{x^2} - 4} \right)}}\)

LG b.

LG b.

\(\dfrac{{x + 5}}{{{x^2} + 4x + 4}}\) và \(\dfrac{x}{{3x + 6}}\)

Phương pháp giải:

Áp dụng quy tắc quy đồng mẫu thức:

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

+ Phân tích mẫu thức thành nhân tử để tìm mẫu thức chung

\({x^2} + 4x + 4  = {x^2} + 2.x.2 + {2^2}= {\left( {x + 2} \right)^2}\)

\(3x + 6 = 3\left( {x + 2} \right)\)

Nên MTC = \(3{\left( {x + 2} \right)^2}\)

+ Nhân tử phụ:

\(3{\left( {x + 2} \right)^2}:(x+2)^2=3\)

\(3{\left( {x + 2} \right)^2}:[3(x+2)]=x+2\)

+ Quy đồng:

 \(\dfrac{{x + 5}}{{{x^2} + 4x + 4}} = \dfrac{{\left( {x + 5} \right).3}}{{{{\left( {x + 2} \right)}^2}.3}} = \dfrac{{3\left( {x + 5} \right)}}{{3{{\left( {x + 2} \right)}^2}}}\)

\(\dfrac{x}{{3x + 6}} = \dfrac{{x.\left( {x + 2} \right)}}{{3\left( {x + 2} \right).\left( {x + 2} \right)}} = \dfrac{{x\left( {x + 2} \right)}}{{3{{\left( {x + 2} \right)}^2}}}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved